Low-Rank Univariate Sum-of-Squares Has No Spurious Local Minima

Presented by Benoît Legat
Based on joint work with Chenyang Yuan and Pablo Parrilo
First-order methods

- Amenability to **parallelization**
- Affordable **per-iteration** computational cost
- Low **storage** requirements

<table>
<thead>
<tr>
<th># nodes</th>
<th>PDLP</th>
<th>SCS</th>
<th>Gurobi Barrier</th>
<th>Gurobi Primal Simp.</th>
<th>Gurobi Dual Simp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^4</td>
<td>7.4 sec.</td>
<td>1.3 sec.</td>
<td>36 sec.</td>
<td>37 sec.</td>
<td>114 sec.</td>
</tr>
<tr>
<td>10^5</td>
<td>35 sec.</td>
<td>38 sec.</td>
<td>7.8 hr.</td>
<td>9.3 hr.</td>
<td>>24 hr.</td>
</tr>
<tr>
<td>10^6</td>
<td>11 min.</td>
<td>25 min.</td>
<td>OOM</td>
<td>>24 hr.</td>
<td>-</td>
</tr>
<tr>
<td>10^7</td>
<td>5.4 hr.</td>
<td>3.8 hr.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Deep Learning uses gradient-based solvers on large scale problems

Very successful on various classification and inference tasks

Solved with highly parallelized first-order methods
Nonconvex factorization formulations

- Basin of attraction
 - Initialization
 - Iterative refinement
- Benign Global Landscape

 Require statistical/genericity conditions such as Restricted isometry property (RIP)

Matrix sensing, matrix completion, phase retrieval, blind deconvolution, ...

\[
\begin{align*}
\text{minimize} \quad & f(L, R) = \frac{1}{4m} \sum_{i=1}^{m} (\langle A_i, LR^\top \rangle - y_i)^2 \\
\end{align*}
\]

Semidefinite programming (SDP) is a powerful and expressive convex optimization method.

A $n \times n$ positive semidefinite variable $X \succeq 0$ plus m linear constraints.

Applications: Optimal control, Lyapunov analysis, convex relaxations of combinatorial optimization, rank minimization and nuclear norm, ...

Typically solved with expensive interior point methods.

- $O((mn + m^2)n^2)$ operations per iteration
- $O(\sqrt{n \log(\varepsilon)})$ iterations
- $O(m^2 + n^2)$ memory

First-order solver for nonconvex factorization formulation?
Introduction

Burer-Monteiro methods factor PSD constraint \(X = UU^T \), then perform local optimization on resulting non-convex unconstrained problem

\[
\langle A_i, X \rangle = b_i \quad \forall i \\
X \succeq 0
\]

Feasible

\[
\min_U \sum_i (\langle A_i, UU^T \rangle - b_i)^2
\]

Optimum = 0

May get stuck in local optimum (explicit counterexamples where second-order critical point ≠ global minimum)

When is non-convexity benign?
Related work

For general SDP feasibility with m linear constraints, with the factorization $X = UU^T$, where U is a $n \times r$ matrix.

Second-order critical point \Rightarrow Global minimum (non-convexity benign) when:

- $r > n$ [Burer and Monteiro]
- $r = \Omega(\sqrt{m})$, but with smoothed analysis [Cifuentes and Moitra], generic constraints [Bhojanapalli, Boumal, Jain, Netrapalli], or determinant regularization [Burer and Monteiro], (necessary because of counterexamples)

Can we do better if the SDP has special structure?

Sum of Squares Optimization

Given $p(x)$, can we write it as a sum of squares?

Certifies that $p(x) \geq 0$, and can be formulated as SDP

Focus on univariate trigonometric polynomials in this talk (methods can be generalized to multivariate case)

$$p(x) = a_0 + \sum_{k=1}^{d} a_k \cos(kx) + a_{-k} \sin(kx), \quad x \in [0, \pi]$$

Applications in signal processing, filter design and control

$$H(z) = C(zI - A)^{-1}B$$

Univariate to trigonometric basis

\[x^2 - 2x + 1 \]
\[x^2 - 2xy + y^2 \]
\[\cos(\alpha)^2 - 2 \cos(\alpha) \sin(\alpha) + \sin(\alpha)^2 \]
\[1 - \sin(2\alpha) \]

Linear transformation on coefficients:

Chebyshev basis

Contributions

Find sum of squares decomposition of \(p(x) \) by solving

\[
\min_u f(u) = \left\| \sum_{i=1}^{r} u_i(x)^2 - p(x) \right\|
\]

For any norm on polynomials, if \(f(u) = 0 \), sum of squares decomposition agrees with \(p(x) \).

Theorem: when \(r \geq 2 \) (vs \(r = \Omega(\sqrt{m}) \)) first-order methods find sum of squares decomposition for univariate polynomials (non-convexity benign)

If we choose right norm, \(\nabla f(u) \) can be computed in \(O(d \log d) \) time using fast fourier transforms (FFTs)

Sampled basis

Which inner product $\langle p(x), q(x) \rangle$ on polynomials to choose?

Given $p(x)$, $q(x)$ degree d, choose $d+1$ points x_k

$$\langle p(x), q(x) \rangle = \sum_{k=1}^{d+1} p(x_k)q(x_k), \quad \|p(x)\|^2 = \sum_{k=1}^{d+1} p(x_k)^2$$

Valid inner product: when x_k are distinct points, if $\|p(x)\|^2 = 0$ then $p(x) = 0$.

Sum of squares using a sampled/interpolation basis studied by [Löfberg and Parrilo] and [Cifuentes and Parrilo]

How should we choose x_k?

Numerical Implementation

Compute sum of squares decomposition of degree 2d trigonometric polynomial

\[p(x) = a_0 + \sum_{k=1}^{d} a_k \cos(kx) + a_{-k} \sin(kx) \]

Using basis vectors evaluated at 2d + 1 points

\[\langle p, q \rangle = \sum_{k=1}^{2d+1} p(x_k)q(x_k), \quad x_k = \frac{2k\pi}{2d + 1} \]

\[B_k = \begin{bmatrix} 1 & \cos(x_k) & \cdots & \cos\left(\frac{d}{2}x_k\right) & \sin(x_k) & \cdots & \sin\left(\frac{d}{2}x_k\right) \end{bmatrix}^T \]

Matrix-vector products in \(\nabla f(U) \) can be computed by FFT

\[\nabla f(U) = U^T B \text{diag}(\|U^T B_k\|^2 - p(x_k)) B^T \]
Results

Sum of squares decomposition for random trigonometric polynomial

Convergence rate for LBFGS with random initialization:

<table>
<thead>
<tr>
<th>Degree</th>
<th>Time in seconds</th>
<th>Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,000</td>
<td>2 (1 – 2)</td>
<td>340 (306 – 384)</td>
</tr>
<tr>
<td>10,000</td>
<td>6 (5 – 6)</td>
<td>530 (497 – 592)</td>
</tr>
<tr>
<td>20,000</td>
<td>9 (8 – 10)</td>
<td>632 (587 – 695)</td>
</tr>
<tr>
<td>100,000</td>
<td>53 (46 – 59)</td>
<td>1126 (980 – 1248)</td>
</tr>
<tr>
<td>200,000</td>
<td>160 (139 – 174)</td>
<td>1375 (1212 – 1532)</td>
</tr>
<tr>
<td>1,000,000</td>
<td>1461 (1212 – 1532)</td>
<td>2303 (1934 – 2437)</td>
</tr>
</tbody>
</table>

Running times (stop at 10^{-7} relative error in U):

Use r = 4 with 4 cores.
Comparison with existing algorithms

Sturm sequence: Decide positivity of univariate polynomial of degree d in $O(d^2)$

Interior-point: Univariate Sum-of-Squares program of degree d in $O(d^4)$ per iteration and $O(\sqrt{d \log(\epsilon)})$ iterations.

Infeasibility: Dual certificate.

Burer-Monteiro: $O(d \log(d))$ per iteration for degree d.

Infeasibility: Projection to SOS cone.

Guarantee on number of iterations of Burer-Monteiro for univariate SOS?
Proof Sketch

Assume that $p(x)$ is a univariate polynomial and $r = 2$

$$f(u) = \left\| u_1(x)^2 + u_2(x)^2 - p(x) \right\|^2 = \left\| s(x) - p(x) \right\|^2$$

Given u such that $\nabla f(u)(v) = 0$ and $\nabla^2 f(u)(v,v) \geq 0$ for all v, show that $f(u) = 0$

We have inner product $\langle p(x), q(x) \rangle$ on polynomials with associated norm $\| . \|:

$$\nabla f(u)(v) \sim \left\langle \sum_{j=1}^{r} u_j(x) v_j(x), s(x) - p(x) \right\rangle = 0$$

$$\nabla^2 f(u)(v,v) \sim \left\langle \sum_{j=1}^{r} v_j(x)^2, s(x) - p(x) \right\rangle + 2 \left\| \sum_{j=1}^{r} u_j(x) v_j(x) \right\|^2 \geq 0$$
Proof Sketch

Geometrically, we want to show that the only intersection between set with zero gradient and PSD Hessian is when \(f(u) = 0 \).

For fixed \(u \), these sets are convex!

Our proof can be interpreted as finding a certificate of this condition for every \(u \) and \(p \).
Proof Sketch

\[\nabla f(u)(v) \sim \langle u_1(x)v_1(x) + u_2(x)v_2(x), s(x) - p(x) \rangle = 0 \]
\[\nabla^2 f(u,v) \sim \langle v_1(x)^2 + v_2(x)^2, s(x) - p(x) \rangle + 2 \|u_1(x)v_1(x) + u_2(x)v_2(x)\|^2 \geq 0 \]

Suppose \(u_1, u_2 \) coprime (true generically)

Bézout's lemma + gradient condition \(\Rightarrow \) exist \(v_1, v_2 \) s.t.

\[u_1(x)v_1(x) + u_2(x)v_2(x) = s(x) - p(x) \quad \Rightarrow \quad \| s(x) - p(x) \|^2 = 0 \]

Suppose \(u_1 = u_2 \), choose \(v_1 = v \) and \(v_2 = -v \) in Hessian condition so for all \(v \),

\[\langle v(x)^2, s(x) - p(x) \rangle \geq 0 \quad \Rightarrow \quad \langle p(x), s(x) - p(x) \rangle \geq 0 \]

However, \(\langle s(x), s(x) - p(x) \rangle = 0 \) (gradient condition), so \(\| s(x) - p(x) \|^2 = 0 \)

Interpolate between these two cases with the Positivstellensatz
Numerical Implementation

TrigPolys.jl: a new package for fast manipulation of trigonometric polynomials

```julia
function Base.*(p1::TrigPoly, p2::TrigPoly)
    n = p1.n + p2.n
    interpolate(evaluate(pad_to(p1, n)) .* evaluate(pad_to(p2, n)))
end
```

evaluate, evaluateT and interpolate uses FFTW.jl, enables fast computation of $f(U)$:

```julia
f(u) = sum((evaluate(pad_to(u, p.n)).^2 - evaluate(p)).^2)
```

AutoGrad.jl enables automatic computation of $\nabla f(U)$

```julia
AutoGrad.@primitive evaluate(u::AbstractArray), dy, y evaluateT(dy)
fg = AutoGrad.grad(f)
```

Pass $f(U)$, $\nabla f(U)$ to NLopt.jl to minimize $f(U)$ with first-order optimization algorithms
Conclusion

When does it make sense to solve non-convex formulations of convex problems?

In our setting we can prove non-convexity does not hurt us

Also enables fast implementation in Julia