Evaluation complexity of algorithms for nonconvex optimization

Coralia Cartis (University of Oxford)

Joint with Nick Gould (Rutherford Appleton Laboratory, UK) and Philippe Toint (University of Namur, Belgium)

TraDE-OPT Workshop on Algorithmic and Continuous Optimization, Université Catholique de Louvain, Belgium July 4-8, 2022 [Evaluation complexity of algorithms for nonconvex optimization](#page-48-0)

Nonconvex optimization

Find (local) solutions of the optimization problem:

minimize $f(x)$ where f is smooth $x \in \mathbb{R}^n$

with $f(x)$ possibly nonconvex and *n* possibly large.

Ackeley's function Rosenbrock's function

[Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

Standard methods for nonconvex optimization

minimize $f(x)$ where f is smooth. $x \in \mathbb{R}^n$

• f has gradient vector ∇f (first derivatives) and Hessian matrix $\nabla^2 f$ (second derivatives).

 \longrightarrow local minimizer x_* with $\nabla f(x_*) = 0$ (stationarity) and $\nabla^2 f(x_*) \succ 0$ (local convexity).

Derivative-based methods:

► user-given $x_0 \in \mathbb{R}^n$, generate iterates x_k , $k \geq 0$.

If $f(x_k + s) \approx m_k(s)$ simple model of f at x_k ; m_k linear or quadratic Taylor approximation of f. $s_k \rightarrow \min_s m_k(s); s_k \rightarrow x_{k+1} - x_k$

[Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

EX terminate within ϵ of optimality (small gradient values).

Choices of models

▶ linear : $m_k(s) = f(x_k) + \nabla f(x_k)^T s$

 \rightarrow s_k steepest descent direction.

[Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

▶ quadratic : $m_k(s) = f(x_k) + \nabla f(x_k)^T s + \frac{1}{2} s^T \nabla^2 f(x_k) s$ \longrightarrow s_k Newton-like direction.

Must safeguard s_k to ensure method converges globally, from an arbitrary starting point x_0 , to first/second order critical points.

Adaptive 'globalization' strategies:

- \blacktriangleright Linesearch (Cauchy (1847), Armijo (1966))
- \blacktriangleright Trust region (Fletcher, Powell (1970s))

Much reliable, efficient software for (large-scale) problems.

Evaluation complexity of optimization algorithms

Relevant analyses of iterative optimization algorithms:

- \triangleright Global convergence to first/second-order critical points (from any initial guess)
- \triangleright Local convergence and local rates (sufficiently close initial guess, well-behaved minimizer)

[Newton's method: Q-quadratic; steepest descent: linear]

- \triangleright Global rates of convergence (from any initial guess) ⇐⇒ Worst-case evaluation complexity of methods [well-studied for convex problems, unprecedented for nonconvex until recently]
	- \triangleright evaluations are often expensive in practice (climate modelling, molecular simulations, etc)
	- \blacktriangleright black-box/oracle computational model (suitable for the different 'shapes and sizes' of nonlinear problems)

[Nemirovskii & Yudin ('83); Vavasis ('92), Sikorski ('01), Nesterov ('04)]

- \blacktriangleright Evaluation complexity of standard optimization methods
- \blacktriangleright The power of regularization methods: optimal evaluation complexity
- \triangleright Beyond Newton: high-degree tensor methods
- \blacktriangleright Beyond smoothness: universal methods
- \blacktriangleright Methods using only occasionally accurate evaluations: contemporary challenges

Global efficiency of standard methods

Steepest descent method (with linesearch or trust-region):

- \blacktriangleright $f \in \mathcal{C}^1(\mathbb{R}^n)$ with Lipschitz continuous gradient.
- ► to generate gradient $\|\nabla f(x_k)\| \leq \epsilon$, requires at most

[Nesterov ('04); Gratton, Sartenaer & Toint ('08), C., Gould, Toint ('12)]

[Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

 $\lceil \kappa_{\text{sd}} \cdot \text{Lips}_{g} \cdot (f(x_0) - f_{\text{low}}) \cdot \epsilon^{-2} \rceil$ function evaluations.

Global efficiency of standard methods

Steepest descent method (with linesearch or trust-region):

- \blacktriangleright $f \in \mathcal{C}^1(\mathbb{R}^n)$ with Lipschitz continuous gradient.
- ► to generate gradient $\|\nabla f(x_k)\| \leq \epsilon$, requires at most

[Nesterov ('04); Gratton, Sartenaer & Toint ('08), C., Gould, Toint ('12)]

[Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

 $\lceil \kappa_{\text{sd}} \cdot \text{Lips}_{g} \cdot (f(x_0) - f_{\text{low}}) \cdot \epsilon^{-2} \rceil$ function evaluations.

Newton's method :

 \triangleright when globalized with trust-region or linesearch, Newton's method will take at most

 $\lceil \kappa_N \epsilon^{-2} \rceil$ evaluations to generate $\|\nabla f(x_k)\| \leq \epsilon$.

 \triangleright similar worst-case complexity for classical trust-region and linesearch methods, even on smoother objectives.

Worst-case bound is sharp for steepest descent

Steepest descent method : $[C, Gould, Toint ('10, '12)]$

[Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

$$
\blacktriangleright x_{k+1} = x_k - \alpha_k \nabla f(x_k) \text{ with } \alpha_k = \arg\min_{\alpha \geq 0} f(x_k - \alpha g(x_k))
$$

► takes $\lceil \epsilon^{-2} \rceil$ iterations/evaluations to generate $\lVert \nabla f(x_k) \rVert \leq \epsilon$

Contour lines of $f(x_1, x_2)$ and path of iterates; ∇f globally Lipschitz continuous

Global efficiency of Newton's method

Newton's method: as slow as steepest descent $[C, G_{\text{ould}}, T_{\text{oint (10, '15)}}]$ • may require $\lceil \epsilon^{-2} \rceil$ evaluations/iterations, same as steepest descent method

Globally Lipschitz continuous gradient and Hessian But Regularized Newton (ie, ARC) has better/optimal complexity.

[Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

Cubic regularization methods

[Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

Improved complexity for cubic regularization

A cubic model: [Griewank ('81, TR), Nesterov & Polyak ('06), Weiser et al ('07)] $\nabla^2 f$ is globally Lipschitz continuous with Lipschitz constant L_H : Taylor, Cauchy-Schwarz and Lipschitz \implies

$$
f(x_k+s) \leq \underbrace{f(x_k)+s^\top \nabla f(x_k)+\frac{1}{2}s^\top \nabla^2 f(x_k)s+\frac{1}{6}L_H \|s\|_2^3}_{m_k(s)}
$$

 \implies reducing m_k from $s = 0$ decreases f since $m_k(0) = f(x_k)$.

Cubic regularization method: [Nesterov & Polyak ('06)]

[Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

$$
\blacktriangleright x_{k+1} = x_k + s_k
$$

IDED compute $s_k \longrightarrow \min_s m_k(s)$ globally: $\left[\text{possible, even if } m_k \text{ nonconvex!}\right]$

Improved complexity for cubic regularization

A cubic model: [Griewank ('81, TR), Nesterov & Polyak ('06), Weiser et al ('07)] $\nabla^2 f$ is globally Lipschitz continuous with Lipschitz constant L_H : Taylor, Cauchy-Schwarz and Lipschitz \implies

$$
f(x_k+s) \leq \underbrace{f(x_k)+s^{\mathsf{T}}\nabla f(x_k)+\frac{1}{2}s^{\mathsf{T}}\nabla^2 f(x_k)s+\frac{1}{6}L_H\|s\|_2^3}{m_k(s)}
$$

 \implies reducing m_k from $s = 0$ decreases f since $m_k(0) = f(x_k)$.

Cubic regularization method: [Nesterov & Polyak ('06)]

[Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

$$
\blacktriangleright x_{k+1} = x_k + s_k
$$

IF compute $s_k \longrightarrow \min_s m_k(s)$ globally: $\left[\text{possible, even if } m_k \text{ nonconvex!}\right]$ Worst-case evaluation complexity: at most $\left \lceil \kappa_{\rm cr} \cdot \epsilon^{-3/2} \right \rceil$ function evaluations to ensure $\|\nabla f(x_k)\| \leq \epsilon$. [Nesterov & Polyak ('06)]

Improved complexity for cubic regularization

A cubic model: [Griewank ('81, TR), Nesterov & Polyak ('06), Weiser et al ('07)] $\nabla^2 f$ is globally Lipschitz continuous with Lipschitz constant L_H : Taylor, Cauchy-Schwarz and Lipschitz \implies

 $f(x_k + s) \leq f(x_k) + s^{\mathsf{T}} \nabla f(x_k) + \frac{1}{2} s^{\mathsf{T}} \nabla^2 f(x_k) s + \frac{1}{6}$ $\frac{1}{6}L_H$ ||s|| $\frac{3}{2}$ ${m(\epsilon)}$ $m_k(s)$

 \implies reducing m_k from $s = 0$ decreases f since $m_k(0) = f(x_k)$.

Cubic regularization method: [Nesterov & Polyak ('06)]

$$
\blacktriangleright x_{k+1} = x_k + s_k
$$

IF compute $s_k \longrightarrow \min_s m_k(s)$ globally: $\left[\text{possible, even if } m_k \text{ nonconvex!}\right]$

Worst-case evaluation complexity: at most $\left \lceil \kappa_{\rm cr} \cdot \epsilon^{-3/2} \right \rceil$ function evaluations to ensure $\|\nabla f(x_k)\| \leq \epsilon$. [Nesterov & Polyak ('06)]

Can we make cubic regularization computationally efficient ? [Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

► cubic regularization model at X_k [C, Gould & Toint ('11,'17,'18)]

$$
m_k(s) = f(x_k) + \nabla f(x_k)^T s + \frac{1}{2} s^T \nabla f^2(x_k) s + \frac{1}{6} \sigma_k ||s||_2^3
$$

where $\sigma_{\bm{k}} > 0$ is a regularization weight. $\left[B_{\bm{k}} \approx \nabla f^2(\bm{\mathsf{x}}_{\bm{k}}) \text{ allowed}\right]$

► cubic regularization model at X_k [C, Gould & Toint ('11,'17,'18)]

$$
m_k(s) = f(x_k) + \nabla f(x_k)^T s + \frac{1}{2} s^T \nabla f^2(x_k) s + \frac{1}{6} \sigma_k ||s||_2^3
$$

where $\sigma_{\bm{k}} > 0$ is a regularization weight. $\left[B_{\bm{k}} \approx \nabla f^2(\bm{\mathsf{x}}_{\bm{k}}) \text{ allowed}\right]$ ▶ compute s_k : $m_k(s_k) < f(x_k)$ and $\|\nabla_s m_k(s_k)\| \leq \theta_1 \|s_k\|^2$ [no global model minimization required, but possible]

► cubic regularization model at X_k [C, Gould & Toint ('11,'17,'18)]

$$
m_k(s) = f(x_k) + \nabla f(x_k)^T s + \frac{1}{2} s^T \nabla f^2(x_k) s + \frac{1}{6} \sigma_k ||s||_2^3
$$

where $\sigma_{\bm{k}} > 0$ is a regularization weight. $\left[B_{\bm{k}} \approx \nabla f^2(\bm{\mathsf{x}}_{\bm{k}}) \text{ allowed}\right]$ ▶ compute s_k : $m_k(s_k) < f(x_k)$ and $\|\nabla_s m_k(s_k)\| \leq \theta_1 \|s_k\|^2$ [no global model minimization required, but possible]

► compute measure of progress $\rho_k = \frac{f(x_k) - f(x_k + s_k)}{f(x_k) - f(x_k + s_k)}$ $f(x_k) - m_k(s_k) + \frac{1}{6}\sigma_k ||s||^3$

Set $x_{k+1} = \begin{cases} x_k + s_k & \text{if } \rho_k > \eta = 0.1 \end{cases}$ x_k otherwise

In update regularization weight $\sigma_{k+1} = \frac{\sigma_k}{\sigma_k}$ $\frac{\partial^2 K}{\partial x^2} = 2\sigma_k$ when $\rho_k < \eta;$ else $\sigma_{k+1} = \max\{\gamma_2 \sigma_k, \sigma_{\min}\} = \max\{\frac{1}{2}\sigma_k, \sigma_{\min}\}$

ARC has excellent convergence properties: globally, to second-order critical points and locally, Q-quadratically.

ARC: efficient and scalable subproblem solution techniques.

Worst-case performance of ARC

If $\nabla^2 f$ is globally Lipschitz continuous, then ARC requires at most $\left[\kappa_{\rm arc}\cdot L_{\rm H}^{\frac{3}{2}}\cdot\left(f(x_0)-f_{\rm low}\right)\cdot\epsilon^{-\frac{3}{2}}\right]$ function evaluations

to ensure $\|\nabla f(x_k)\| \leq \epsilon$. [same as theoretical CR method of Nesterov & Polyak ('06)]

Worst-case performance of ARC

If $\nabla^2 f$ is globally Lipschitz continuous, then ARC requires at most $\left[\kappa_{\rm arc}\cdot L_{\rm H}^{\frac{3}{2}}\cdot\left(f(x_0)-f_{\rm low}\right)\cdot\epsilon^{-\frac{3}{2}}\right]$ function evaluations

to ensure $\|\nabla f(x_k)\| \leq \epsilon$. [same as theoretical CR method of Nesterov & Polyak ('06)]

Key ingredients:

In sufficient function decrease: from $m_k(s_k) < f(x_k)$, we have $f(x_k) - f(x_{k+1}) \ge \eta [f(x_k) - m_k(s_k) + \frac{\sigma_k}{6} ||s_k||^3] \ge \frac{\eta}{6}$ $\frac{\eta}{6}\sigma_k\|\mathsf{s}_k\|^3$

If $\nabla^2 f$ is globally Lipschitz continuous, then ARC requires at most $\left[\kappa_{\rm arc}\cdot L_{\rm H}^{\frac{3}{2}}\cdot\left(f(x_0)-f_{\rm low}\right)\cdot\epsilon^{-\frac{3}{2}}\right]$ function evaluations

to ensure $\|\nabla f(x_k)\| \leq \epsilon$. [same as theoretical CR method of Nesterov & Polyak ('06)]

Key ingredients:

In sufficient function decrease: from $m_k(s_k) < f(x_k)$, we have $f(x_k) - f(x_{k+1}) \ge \eta [f(x_k) - m_k(s_k) + \frac{\sigma_k}{6} ||s_k||^3] \ge \frac{\eta}{6}$ $\frac{\eta}{6}\sigma_k\|\mathsf{s}_k\|^3$ \blacktriangleright long successful steps: $\|s_k\| \geq C \|\nabla f(x_{k+1})\|^{\frac{1}{2}}$ (and $\sigma_k \geq \sigma_{\min} > 0$)

[Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

$$
\implies \text{while } \|\nabla f(x_{k+1})\| \ge \epsilon \text{ and } k \text{ successful},
$$

$$
f(x_k) - f(x_{k+1}) \ge \frac{\eta}{3}\sigma_{\min}C \cdot \epsilon^{\frac{3}{2}}
$$

summing up over k successful: $\;\; f(x_0)-f_{\rm low} \geq k_{\rm S} \frac{\eta \sigma_{\rm min} C}{3} \epsilon^{\frac{3}{2}}$

Cubic regularization: worst-case bound is optimal

Sharpness: for any $\epsilon > 0$, to generate $|f'(x_k)| \leq \epsilon$, cubic regularization/ARC applied to this f takes precisely

 $\left\lceil \frac{\epsilon^{-\frac{3}{2}}}{\epsilon^{-\frac{3}{2}}} \right\rceil$ iterations/evaluations

ARC's worst-case bound is optimal within a large class of second-order methods for f with Lipschitz continuous $\nabla^2 f$.

[[]CGT'11, Carmon et al'18]

Worst-case evaluation complexity of methods: summary

Global rates of convergence from any initial guess

Under sufficient smoothness assumptions on derivatives of f (Lipschitz continuity), for any $(\epsilon_1, \epsilon_2) > 0$, the algorithms generate $\|\nabla f(\mathsf{x}_k)\| \leq \epsilon_1$ (and $\lambda_{\mathsf{min}}(\nabla^2 f(\mathsf{x}_k)) \geq -\epsilon_2)$ in at most $k_{\epsilon}^{\text{alg}}$ iterations/evaluations:

[LS+:Royer et al'18]

- \triangleright O(·) contains $f(x_0) f_{\text{low}}$, L_{grad} or L_{Hessian} and algorithm parameters.
- \blacktriangleright all bounds are sharp, ARC bound is optimal for second-order methods [C, Gould & Toint,'10,'11, '17; Carmon et al ('18)]

Regularization methods with higher derivatives

[Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

Adaptive cubic regularization: ARC $(=\!\!AR2)$

[Griewank ('81, TR); Nesterov & Polyak ('06); Weiser et al ('07); C, Gould & Toint ('11)]

[Dussault ('15); Birgin et al ('17)]

ighthroupon cubic regularization model at x_k

 $m_k(s) = f(x_k) + \nabla f(x_k)[s] + \frac{1}{2}\nabla f^2(x_k)[s]^2 + \frac{1}{6}$ ${\cal T}_2(x_k, s)$ $\frac{1}{6}\sigma_k \|s\|_2^3$ where $\sigma_k > 0$ is a regularization weight. $\left[{\textit B}_k \approx \nabla {\textit r}^2({\textit x}_k) \right]$ allowed] ▶ compute $s_k: m_k(s_k) < f(x_k)$, $\|\nabla_s m_k(s_k)\| \leq \theta_1 \|s_k\|_2^2$ and $\lambda_{\sf min}(\nabla^2_{\sf s} m_k({\sf s}_k)) \geq -\theta_2 \|{\sf s}_k\|_2^1 \quad$ [no global model minimization required, but possible] \triangleright compute $\rho_k = \frac{f(x_k) - f(x_k + s_k)}{f(x_k) - f(x_k, s_k)}$ $f(x_k) - T_2(x_k, s_k)$ Set $x_{k+1} = \begin{cases} x_k + s_k & \text{if } \rho_k > \eta = 0.1 \end{cases}$ x_k otherwise \bullet $\sigma_{k+1} = \frac{\sigma_k}{\sigma_k}$ $\frac{\partial^2 K}{\partial \gamma_1} = 2\sigma_k$ when $\rho_k < \eta$; else $\sigma_{k+1} = \max\{\gamma_2 \sigma_k, \sigma_{\min}\} = \max\{\frac{1}{2}\sigma_k, \sigma_{\min}\}$ [Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

Adaptive pth order regularization: ARp

[Birgin et al ('17), C, Gould, Toint('20)] ARp proceeds similarly to ARC/AR2: ighth order regularization model at x_k $m_k(s) = f(x_k) + \nabla f(x_k)[s] + \ldots + \frac{1}{n}$ $\frac{1}{\rho!}\nabla^{\rho}f(x^k)[s]^{\rho}+\frac{1}{(\rho+1)!}\sigma_k\|s\|_2^{\rho+1}$ $T_n(x_k,s)$ $T_p(x_k,s)$ 2 where $\sigma_k > 0$ is a regularization weight. ▶ compute s_k : $m_k(s_k) < f(x_k)$, $\|\nabla_s m_k(s_k)\| \leq \theta_1 \|s_k\|_2^p$ $\frac{p}{2}$ and $\lambda_{\sf min}(\nabla^2_{\sf s} m_k({\sf s}_k)) \geq -\theta_2 \|{\sf s}_k\|^{p-1} \qquad \qquad \textrm{[no global model minimization required]}$ \triangleright compute $\rho_k = \frac{f(x_k) - f(x_k + s_k)}{f(x_k) - f(x_k, s_k)}$ $f(x_k) - T_p(x_k, s_k)$ Set $x_{k+1} = \begin{cases} x_k + s_k & \text{if } \rho_k > \eta = 0.1 \\ x_k & \text{otherwise} \end{cases}$ x_k otherwise \bullet $\sigma_{k+1} = \frac{\sigma_k}{\sigma_k}$ $\frac{\partial^2 K}{\partial \gamma_1} = 2\sigma_k$ when $\rho_k < \eta$; else $\sigma_{k+1} = \max\{\gamma_2 \sigma_k, \sigma_{\min}\} = \max\{\frac{1}{2}\sigma_k, \sigma_{\min}\}$ [Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

Worst-case complexity of ARp for 1st/2nd-order criticality

[Birgin et al ('17), C. Gould, Toint('20)]

Theorem: Let $p \geq 2$, $f \in C^p(\mathbb{R}^n)$, bounded below by f_{low} and with the pth derivative Lipschitz continuous. Then ARp requires at most

$$
\left[\kappa_{1,2}\cdot\left(f(x_0)-f_{\text{low}}\right)\cdot\max\left[\epsilon_1^{\frac{-p+1}{p}},\epsilon_2^{\frac{-p+1}{p-1}}\right]+\kappa_{1,2}\right]
$$

function and derivatives' evaluations/iterations to ensure $\|\nabla f(x_k)\| \leq \epsilon_1$ and $\lambda_{\sf min}(\nabla^2 f(x_k)) \geq -\epsilon_2$.

All bounds are sharp, and ARp 1st-order bound is optimal for pth order mthds.

[C, Gould & Toint,'20 Carmon et al ('18)] [Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

Worst-case complexity of ARp for 1st/2nd-order criticality

Sketch of Proof (Theorem): [Birgin et al ('17), C, Gould, Toint('20)]

 \blacktriangleright Sufficient decrease on successful steps

$$
f(x_k) - f(x_{k+1}) \geq \eta[f(x_k) - T_p(x_k, s_k)]
$$

= $f(x_k) - m_k(s_k) + \frac{\sigma_k}{(p+1)!} ||s_k||^{p+1}$

$$
\geq \frac{\sigma_{\min}}{(p+1)!} ||s_k||^{p+1}
$$

$$
\geq \min{\{\epsilon_1^{(p+1)/p}, \epsilon_2^{(p+1)/(p-1)}\}} \qquad (*)
$$

▶ Long steps: first-order

$$
\|s_k\| \geq c_1 \left(\frac{\|\nabla f(x_k + s_k)\|}{L + \theta_1 + \sigma_{\max}}\right)^{1/p} \geq c_1 \epsilon_1^{1/p}
$$

and second-order

$$
\|s_k\|\geq c_2\left(\frac{\lambda_{\mathsf{min}}(\nabla^2 f(x_k+s_k))}{L+\theta_2+\sigma_{\mathsf{max}}}\right)^{1/(p-1)}\geq c_2\epsilon_2^{1/(p-1)}
$$

where $\sigma_k \leq \sigma_{\text{max}} = C \cdot L$. Summing up (*) over successful iterations $+$ counting unsuccessful iterations. [Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

ARp for 3rd-order criticality

In the model minimization, require also the 3rd order approximate condition:

$$
\max_{d \in \mathcal{M}_{k+1}} \left| \nabla_s^3 m_k(s_k)[d]^3 \right| \leq ||s_k||^{p-2},
$$

whenever

$$
\mathcal{M}_{k+1} = \left\{ d \mid ||d|| = 1 \text{ and } |\nabla_s^2 m_k(s_k)[d]^2| \le ||s_k||^{p-1} \right\} \neq \emptyset.
$$

Then under same conditions as Theorem, ARp takes at most

$$
\left[\kappa_{1,2,3} \cdot (f(x_0) - f_{\text{low}}) \cdot \max\left[\epsilon_1^{-\frac{p+1}{p}}, \epsilon_2^{-\frac{p+1}{p-1}}, \epsilon_3^{-\frac{p+1}{p-2}} \right] + \kappa_{1,2,3} \right]
$$

function and derivatives' evaluations/iterations to ensure

$$
\|\nabla f(x_k)\| \le \epsilon_1, \ \lambda_{\min}(\nabla^2 f(x_k)) \ge -\epsilon_2
$$

and
$$
\left|\nabla^3 f(x_k)[d]^3\right| \le \epsilon_3, \ |\nabla^2 f(x_k)[d]^2| \le \epsilon_2, \text{ for all } d \in \mathcal{M}_k.
$$

• \mathcal{M}_k includes approximate objective's Hessian null space if subproblem is solved to local ϵ accuracy. [Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

Regularization methods for high order optimality

[Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

Beyond 3rd order: high(er)-order optimality conditions

[C, Gould, Toint('18, J FoCM)]

Let x_* be a local minimizer of $f \in C^q(\mathbb{R}^n)$. Consider (feasible) descent arcs $x(\alpha) = x_* + \sum_{i=1}^q \alpha^i s_i + o(\alpha^q)$ where $\alpha > 0$. Derive necessary (and sometimes sufficient) optimality conditions. [Hancock, Peano example of non-Taylor based arcs along which descent happens!] For $j \in \{1, \ldots, q\}$, the inequality

$$
\sum_{k=1}^j\frac{1}{k!}\left(\sum_{(\ell_1,...,\ell_k)\in\mathcal{P}(j,k)}\nabla^k_x f(\mathsf{x}_*)[\mathsf{s}_{\ell_1},\ldots,\mathsf{s}_{\ell_k}]\right)\geq 0
$$

holds for all (s_1, \ldots, s_i) such that, for $i \in \{1, \ldots, j-1\}$,

$$
\sum_{k=1}^i \frac{1}{k!} \left(\sum_{(\ell_1,\ldots,\ell_k) \in \mathcal{P}(i,k)} \nabla_x^k f(x_*) [s_{\ell_1},\ldots,s_{\ell_k}] \right) = 0,
$$

where the index sets $\mathcal{P}(j,k) = \{(\ell_1,\ldots,\ell_k) \in \{1,\ldots,j\}^k \mid \sum_{i=1}^k \ell_i = j\}.$ [Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

Beyond 3rd order: high(er)-order optimality conditions

[C, Gould, Toint('18, J FoCM)]

- \triangleright Convex constraints (and suitable constraint qualifications) can be incorporated.
- \triangleright Usual first, second and third order optimality conditions can be derived.
- ▶ But. starting at fourth-order and beyond, necessary conditions above involve a mixture of derivatives of different orders and cannot/should not be separated/disentangled.

Example: Peano variant: $\min_{x \in \mathbb{R}^2} f(x) = x_2^2 - \kappa_1 x_1^2 x_2 + \kappa_2 x_1^4$, where κ_1 and κ_2 are specified parameters.

Fourth-order condition (κ_1 large):

 $\ker^1[\nabla^1_x f(0)] = \Re^2$, $\ker^2[\nabla^2_x f(0)] = e_1$, $\ker^3[\nabla^3_x f(0)] = e_1 \cup e_2$.

$$
\tfrac{1}{2} \nabla_{x}^2 f(0) [s_2]^2 + \tfrac{1}{2} \nabla_{x}^3 f(0) [s_1,s_1,s_2] + \tfrac{1}{24} \nabla_{x}^4 f(0) [s_1]^4 \geq 0
$$

implies the much weaker $\nabla^4_x f(x_*)[s_1]^4 \geq 0$ on $\bigcap_{i=1}^3 \text{ker}^i[\nabla^i_x f(x_*)]$. [Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

Beyond 3rd order: high(er)-order optimality conditions

[C, Gould, Toint('20, arXiv)]

Challenge: find a (necessary) optimality measure for qth order criticality for f that is sufficiently accurate and useful in ARp? For $j \in \{1, \ldots, q\}$, a jth order criticality measure for f is: for some $\delta \in (0,1]$, let

$$
\phi_{f,j}^{\delta}(x) = f(x) - \text{globmin}_{\|d\| \leq \delta} T_j(x, d).
$$

 \rightarrow a robust notion of criticality.

\n- $$
\phi_{f,j}^{\delta}(x)
$$
 is continuous in *x* and δ for all orders *q*.
\n- $\phi_{f,1}^{\delta}(x) = \|\nabla f(x)\|\delta$
\n- $\phi_{f,2}^{\delta}(x) = \max\{0, -\lambda_{\min}(\nabla^2 f(x))\}\delta^2.$
\n

It x is a local minimizer of f, then for $j \in \{1, \ldots, q\}$,

$$
\lim_{\delta \to 0} \frac{\phi_{f,j}^{\delta}(x)}{\delta^j} = 0,
$$

and this limit also implies the involved necessary conditions before. [Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

ARqp: a high order regularization and criticality framework

[C, Gould, Toint('20, arXiv)]

[Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

Exect Let $q \leq p$. The pth order regularization model at x_k

$$
m_k(s) = T_p(x_k, s) + \frac{1}{(p+1)!} \sigma_k ||s||_2^{p+1}.
$$

\n
$$
\text{Compute } (s_k, \delta_s): m_k(s_k) < f(x_k),
$$

\n
$$
\phi_{m_k,j}^{\delta_s}(s_k) \leq \theta \epsilon_j \delta_s^j, \quad j \in \{1, \dots, q\}.
$$

\n
$$
\text{Compute } \rho_k = \frac{f(x_k) - f(x_k + s_k)}{f(x_k) - T_p(x_k, s_k)}
$$

\n
$$
\text{set } x_{k+1} = x_k + s_k \text{ and } \delta_{k+1} = \delta_s \text{ if } \rho_k > \eta = 0.1; \text{ else}
$$

\n
$$
x_{k+1} = x_k \text{ and } \delta_{k+1} = \delta_k.
$$

$$
\sigma_{k+1} = \frac{\sigma_k}{\gamma_1} = 2\sigma_k \text{ when } \rho_k < \eta; \text{ else}
$$
\n
$$
\sigma_{k+1} = \max\{\gamma_2 \sigma_k, \sigma_{\min}\} = \max\{\frac{1}{2}\sigma_k, \sigma_{\min}\}
$$

ARqp: a high order regularization and criticality framework

[C, Gould, Toint('20, arXiv)]

Theorem: Let $p \ge q \ge 1$, $f \in C^p(\mathbb{R}^n)$, bounded below by f_{low} and with derivatives $\nabla^j f$ Lipschitz continuous for $j\in\{1,\ldots,p\}.$ Terminate ARqp when

$$
\phi_{f,j}^{\delta_k}(x_k) \leq \epsilon_j \delta_k^j \quad \text{for all } j \in \{1,\ldots,q\}
$$

for some δ_k that is either 1 $(q=1,2)$ or at least $\mathcal{C}\epsilon=\mathcal{C}(\epsilon_i)_{i=\overline{1,q}}$ [achievable for ARqp]. Until termination, ARqp requires at most

$$
\bullet \quad q=1,2: \quad \left\lceil \kappa_{1,2} \cdot \left(f(x_0) - f_{\text{low}} \right) \cdot \max_{j=1,q} \epsilon_j^{-\frac{p+1}{p-j+1}} + \kappa_{1,2} \right\rceil
$$
\n[same as ARp]

$$
\blacktriangleright \hspace{0.2cm} q > 2: \hspace{1cm} \left\lceil \kappa_q \cdot \left(f(x_0) - f_{\text{low}} \right) \cdot \max_{j=1,q} \epsilon_j^{-\frac{q(p+1)}{p}} + \kappa_q \right\rceil
$$

function and derivatives' evaluations/iterations.

All bounds are sharp [C, Gould, Toint,'20]

ARqp: a high order regularization and criticality framework

[C, Gould, Toint('ICM 2022)]

[Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

Sketch of Proof (Theorem): Same ingredients as for ARp complexity proof:

Sufficient decrease on successful steps

$$
f(x_k) - f(x_{k+1}) \geq \frac{\sigma_{\min}}{(p+1)!} \|s_k\|^{p+1}
$$

Long steps: much more challenging when $q > 2!$

$$
\|\mathbf{s}_k\| \geq c_q \left(\frac{1-\theta}{L+\sigma_{\max}}\right)^{1/p} \epsilon_j^{j/p}
$$

for some $j \in \{1, \ldots, q\}$, where $\sigma_k \leq \sigma_{\text{max}} = C \cdot L$. Lower bound on s_k : $(1-\theta)\epsilon_j\delta^j_k\leq (L+\sigma_{\sf max})\sum_{l=1}^j\delta^l_k\|s_k\|^{p-l+1}$

Summing up $(*)$ over successful iterations $+$ counting unsuccessful iterations.

Higher order methods

A few remarks...

- ARqp with weaker optimality condition: $\phi_{f,j}^{\delta_k} \leq \epsilon_j \delta_k$, $j=\overline{1,q}$, satisfies complexity bound $\mathcal{O}\left(\max_{j=\overline{1,q}} \epsilon_j^{-\frac{p+1}{p-j+1}} \right)$.
- \triangleright TRq (Trust-region detecting qth order criticality) satisfies the weaker complexity bound: $\mathcal{O}(\mathsf{max}_{j=\overline{1,q}} \, \epsilon_{j}^{-(q+1)})$ $j^{-(q+1)}$).
- \triangleright Variants allowing inexact derivatives and evaluations with same complexity available [C, Gould, Toint('20,'22); Bellavia et al('20)]
- \triangleright Convex constraints can be incorporated into ARp and ARqp without affecting the evaluation complexity.
- \triangleright Composite case addressed but weaker complexity bound obtained (same as for TRq). $[{\rm C, Gould, Toint}(20, 22)]$

Universal regularization methods

[Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

Universal ARp for first order criticality

Universal ARp (U-ARp) employs regularized local models

$$
m_k(s) = T_p(x_k, s) + \frac{\sigma_k}{r} ||s||_2^r,
$$

where $r > p \ge 1$, r real, and $T_p(x_k, s)$ as in ARp. U-ARp proceeds similarly to ARp:

► compute s_k : $m_k(s_k) < f(x_k)$, $\|\nabla_s m_k(s_k)\| \leq \theta \|s_k\|^{r-1}$ and $\lambda_{\sf min}(\nabla^2_{\sf s} m_k({\sf s}_k)) \geq -\theta \|{\sf s}_k\|^{r-2}$

$$
\rho_k = \frac{f(x_k) - f(x_k + s_k)}{f(x_k) - T_p(x_k, s_k)}
$$

update σ_k

But U-ARp has an additional crucial ingredient: if $\rho_k \geq \eta$ [i.e., k successful], check whether

 $\sigma_k ||s_k||^{r-1} \geq \alpha ||\nabla f(x_k + s_k)||$ and $\sigma_k ||s_k||^{r-2} \geq -\alpha \lambda_{\text{min}} (\nabla^2 f(x_k + s_k))$

where $\alpha > 0$ is a (suff small) user-chosen constant. (*) U-ARp allows $x_{k+1} = x_k + s_k$ (and σ_k decrease) only when both $\rho_k \geq \eta$ and (*) hold. Else, σ_k is increased. [Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

Beyond Lipschitz continuity, towards non-smoothness

 $f \in C^{p, \beta_p}(\mathbb{R}^n)$: $f \in C^p(\mathbb{R}^n)$ and $\nabla^p f$ is Hölder continuous on the path of the iterates (and trial points), namely,

$$
\|\nabla^{\rho}f(y)-\nabla^{\rho}f(x_k)\|\leq L\|y-x_k\|^{\beta_{\rho}}
$$

holds for all $y \in [x_k, x_k + s_k]$, $k \geq 0$. $L_p > 0$ and $\beta_p \in [0,1]$ for any $p \geq 1$.

- \blacktriangleright $\beta_p = 0$: $\nabla^p f$ uniformly bounded.
- \blacktriangleright $\beta_{p} \in (0,1)$: $\nabla^{p} f$ continuous but not differentiable.
- $\rho_{\rho} = 1$: $\nabla^{\rho} f$ Lipschitz continuous (and differentiable a.e.).

$$
\triangleright
$$
 $\beta_p > 1$: *f* reduces to polynomials.

→ Hölder continuity : a bridging case between smooth and
non-smooth problems
 $\int_{\text{Nemirovski i & Yudin (33), Nesterov (13), Devolder (13),}}$ Nemirovskii & Yudin ('83), Nesterov ('13), Devolder ('13), Grapiglia & Nesterov ('16)]

Let $r \ge p \ge 1$, r real and p integer. Let $f \in C^{p,\beta_p}(\mathbb{R}^n)$. If $r \ge p + \beta_p$ [e.g., $r = p + 1$], then U-ARp requires at most

$$
\left[\kappa_1 \cdot (f(x_0) - f_{\text{low}}) \cdot \max\left[\epsilon_1^{-\frac{p+\beta_p}{p+\beta_p-1}}, \epsilon_2^{-\frac{p+\beta_p}{p+\beta_p-2}}\right]\right]
$$

function/derivative evaluations and iterations to ensure $\|\nabla f(x_k)\| \leq \epsilon_1$ and $\lambda_{\sf min}(\nabla^2 f(x_k)) \geq -\epsilon_2$.

 $r \ge p + \beta_p$ [e.g., $r = p + 1$]: the bound is 'universal', adapting to landscape smoothness without knowing β_p /smoothness of f, $independent of r.$ [C, Gould, Toint ('19, '22)]

Smooth or nonsmooth?

Sharpness example: the ragged landscape of a $f \in C^{1,\beta_1}$

Ratio of $|\nabla f(x) - \nabla f(y)|/|x - y|^{\beta}$ [Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

Methods with occasionally accurate derivatives with Katya Scheinberg (Cornell University)

Context/purpose: f still smooth, but derivatives are inaccurate/impossible/expensive to compute.

 \triangleright Local models may be "good" / "sufficiently accurate" only with certain probability, for example:

 \rightarrow models based on random sampling of function values (within a ball)

 \rightarrow finite-difference schemes in parallel, with total probability of any processor failing less than 0.5

- \triangleright Consider general algorithmic framework, with inaccurate first-(and second-)derivatives and then particularize to methods.
- \triangleright Expected number of iterations to generate sufficiently small true gradients?

[Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

Connections to model-based derivative-free optimization (Powell; Conn, Scheinberg & Vicente'06)

Assume that f is accurate/exact.

 \blacktriangleright Probabilistically accurate local model:

$$
m_k(s) = f(x_k) + s^T g_k + \frac{1}{2} s^T B_k s \frac{1}{6} \sigma_k ||s||^3
$$

with $g_k \approx \nabla f(x_k)$ and $B_k \approx \nabla^2 f(x_k)$ [along the step s_k], where \approx holds with a certain probability $P \in (0,1]$ (conditioned on the past).

 \rightarrow I_k occurs : k true iteration; else, k false.

 \triangleright min_sm_k(s) [cf. derivative-based ARC]; \triangleright adjust σ_k [cf. derivative-based ARC]

[Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

Algorithm : stochastic process and its realizations.

Probabilistic ARC (P-ARC) - complexity guarantees

Assume that f is accurate/exact. Use the local models

$$
m_k(s) = f(x_k) + s^T g_k + \frac{1}{2} s^T B_k s + \frac{1}{6} \sigma_k ||s||^3.
$$

Complexity: If ∇f and $\nabla^2 f$ are globally Lipschitz continuous, then the expected number of iterations that P-ARC takes until $\|\nabla f(x^k)\| \leq \epsilon$ satisfies

$$
\mathbb{E}(N_{\epsilon}) \leq \frac{1}{2P-1} \cdot \kappa_{\text{p-arc}} \cdot (f(x_0) - f_{\text{low}}) \cdot \epsilon^{-\frac{3}{2}}
$$

provided the probability of sufficiently accurate models is $P>\frac{1}{2}$ $\frac{1}{2}$.

This implies $\lim_{k\to\infty} \inf_k \|\nabla f(x_k)\| = 0$ with probability one.

These bounds match the deterministic complexity bounds of corresponding methods (in accuracy order). [Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

 \triangleright Stochastic gradient and batch sampling

$$
\|\nabla f_{S_k}(x^k)-\nabla f(x^k)\|\leq \mu \|\nabla f_{S_k}(x^k)\|
$$

Then model $m_k(s) = f(x^k) + \nabla f_{S_k}(x^k)^\mathsf{T} (x - x^k)$ is sufficiently accurate.

 \triangleright we allow the model to fail with probability less than 0.5, variable parameters.

If $\mathbb{E}(\nabla_S f(x^k)) = \nabla f(x^k)$, we can show that $\nabla_{S_k} f(x^k)$ is probabilistically sufficiently accurate with prob. $P > 0.5$ provided $|S_k|$ is sufficiently large.

[Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)

 \rightarrow generalization of linesearch stochastic gradient methods.

Generating probabilistically-accurate models...

Models formed by sampling of function values in a ball $B(x_k, \Delta_k)$ $(model-based dfo)$ $[Com et al. 2008; Bandeira et al. 2015]$ M_k (p)-fully quadratic model: if the event

 $I_k^q = \{ ||\nabla f(X^k) - G^k|| \le \kappa_g \Delta_k^2 \text{ and } ||\nabla^2 f(X^k) - B^k|| \le \kappa_H \Delta_k \}$

holds at least w.p. p (conditioned on the past).

Cubic regularization methods: choose $\Delta_k = \xi_k / \sigma_k$. Then m_k fully quadratic implies m_k sufficiently accurate if:

- \blacktriangleright ξ_k sufficiently small, of order ϵ ; or
- ightharpoonup and in the algorithm: accept step when $\|s^k\| \ge \kappa \xi_k$, shrink ξ_k and reject step otherwise.

This framework applies to subsampling gradients and Hessians in ARC $\left[\text{Kohler & Lucchi('17), Roosevelt (17)}\right]$

Conclusions

Research monograph: [C, Gould, Toint (2022)]

...much more on inexact methods; subproblem solutions; special-structure problems; constrained problems....

[Evaluation complexity of algorithms for nonconvex optimization](#page-0-0)