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Nonconvex optimization

Find (local) solutions of the optimization problem:

minimize f(x) where f is smooth
xeR"

with f(x) possibly nonconvex and n possibly large.

Ackeley's function Rosenbrock's function
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Standard methods for nonconvex optimization

minimize f(x) where f is smooth.
x€R"

e f has gradient vector Vf (first derivatives) and Hessian matrix
V2f (second derivatives).

— local minimizer x, with Vf(x.) = 0 (stationarity) and
V2f(x) = 0 (local convexity).

Derivative-based methods:
P> user-given xop € R", generate iterates xi, k > 0.

» f(xx+5s)~ my(s) simple model of f at xg;
my linear or quadratic Taylor approximation of f.
Sk — ming mg(S); Sk — Xk+1 — Xk

> terminate within € of optimality (small gradient values).
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Derivative-based local models

Choices of models

> linear : my(s) = f(xi) + VF(xx)Ts
—> sy steepest descent direction.

> quadratic : mk(s) = f(x) + VF(xk) s + 1sTV2F(x)s
— s, Newton-like direction.

Must safeguard sk to ensure method converges globally, from an
arbitrary starting point xp, to first/second order critical points.

Adaptive ‘globalization’ strategies:
» Linesearch (Cauchy (1847), Armijo (1966))
» Trust region (Fletcher, Powell (1970s))
Much reliable, efficient software for (large-scale) problems.
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Evaluation complexity of optimization algorithms

Relevant analyses of iterative optimization algorithms:

» Global convergence to first/second-order critical points (from
any initial guess)

» Local convergence and local rates (sufficiently close initial
guess, well-behaved minimizer)

[Newton's method: Q-quadratic; steepest descent: linear]

» Global rates of convergence (from any initial guess)
<= Worst-case evaluation complexity of methods
[well-studied for convex problems, unprecedented for nonconvex until recently]

> evaluations are often expensive in practice (climate modelling,
molecular simulations, etc)

» black-box/oracle computational model (suitable for the
different ‘shapes and sizes’ of nonlinear problems)

[Nemirovskii & Yudin ('83); Vavasis ('92), Sikorski ('01), Nesterov ('04)]
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Outline of talk

v

Evaluation complexity of standard optimization methods

The power of regularization methods: optimal evaluation
complexity

Beyond Newton: high-degree tensor methods
Beyond smoothness: universal methods

Methods using only occasionally accurate evaluations:
contemporary challenges

Coralia Cartis (University of Oxford)



Global efficiency of standard methods

Steepest descent method (with linesearch or trust-region):
» f € C}(R") with Lipschitz continuous gradient.
> to generate gradient ||Vf(xx)|| < ¢, requires at most

[Nesterov ('04); Gratton, Sartenaer & Toint ('08), C., Gould, Toint ('12)]

(ﬂsd -Lipsg - (f(x0) — fow) - e*q function evaluations.
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Global efficiency of standard methods

Steepest descent method (with linesearch or trust-region):
» f € C}(R") with Lipschitz continuous gradient.
> to generate gradient ||Vf(xx)|| < ¢, requires at most

[Nesterov ('04); Gratton, Sartenaer & Toint ('08), C., Gould, Toint ('12)]

(ﬁsd -Lipsg - (f(x0) — fow) - e*q function evaluations.
Newton's method :

» when globalized with trust-region or linesearch, Newton's
method will take at most
[rne?]
evaluations to generate ||Vf(xk)|| < e.
» similar worst-case complexity for classical trust-region and
linesearch methods, even on smoother objectives.

Coralia Cartis (University of Oxford)



Worst-case bound is sharp for steepest descent

Steepest descent method : [C. Gould, Toint ('10, '12)]
> X1 = Xk — o, VI(xk) with o = arg ming>o f(xxk — ag(xk))

> takes [¢ 2| iterations/evaluations to generate ||V (xy)|| < €

Contour lines of f(x1,x2) and path of iterates; Vf globally Lipschitz continuous
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Global efficiency of Newton's method

Newton's method: as slow as steepest descent [C, Gould, Toint (10, '15)]

e may require [6*21 evaluations/iterations, same as steepest
descent method

Globally Lipschitz continuous gradient and Hessian

But Regularized Newton (ie, ARC) has better/optimal complexity.
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Cubic regularization methods
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Improved complexity for cubic regularization

A cubic model: [Griewank ('81, TR), Nesterov & Polyak ('06), Weiser et al ('07)]

V?2f is globally Lipschitz continuous with Lipschitz constant Ly:
Taylor, Cauchy-Schwarz and Lipschitz =

1 1
f(xk +s) < f(xx)+ sTVf(xk) + EsTvzf(xk)s + 6LH||5H%

mk(s)

= reducing my from s = 0 decreases f since my(0) = f(x).
Cubic regularization method: [Nesterov & Polyak ('06)]
P Xk+1 = Xk + Sk
» compute sk —> ming my(s) globally: [possible, even if my nonconvext]
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Improved complexity for cubic regularization

A cubic model: [Griewank ('81, TR), Nesterov & Polyak ('06), Weiser et al ('07)]

V?2f is globally Lipschitz continuous with Lipschitz constant Ly:
Taylor, Cauchy-Schwarz and Lipschitz =

1 1
f(xk +s) < f(xx)+ sTVf(xk) + EsTvzf(xk)s + 6LH||5H%

mk(s)

= reducing my from s = 0 decreases f since my(0) = f(x).
Cubic regularization method: [Nesterov & Polyak ('06)]
P Xk+1 = Xk + Sk
» compute sk —> ming my(s) globally: [possible, even if my nonconvext]

Worst-case evaluation complexity: at most MCY . 6_3/2—‘ function
evaluations to ensure HVf(Xk)H S €. [Nesterov & Polyak ('06)]
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Improved complexity for cubic regularization

A cubic model: [Griewank ('81, TR), Nesterov & Polyak ('06), Weiser et al ('07)]

V?2f is globally Lipschitz continuous with Lipschitz constant Ly:
Taylor, Cauchy-Schwarz and Lipschitz =

1 1
f(xk +s) < f(xx)+ sTVf(xk) + EsTvzf(xk)s + 6LH||5H%

mk(s)

= reducing my from s = 0 decreases f since my(0) = f(x).
Cubic regularization method: [Nesterov & Polyak ('06)]
P Xk+1 = Xk + Sk
» compute sk —> ming my(s) globally: [possible, even if my nonconvext]
Worst-case evaluation complexity: at most MCY . 6_3/2—‘ function

evaluations to ensure HVf(Xk)H S €. [Nesterov & Polyak ('06)]

Can we make cubic regularization computationally efficient 7
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Adaptive cubic regularization (ARC): a practical method

» cubic regularization model at x; [C, Gould & Toint ('11,'17,18)]
T 1 702 1 3
m(s) = f(xk) + VF(xk)' s+ 55 Ve(xk)s + 6Uk||sH2

where o, > 0 is a regularization weight. [Bi ~ Vf?(x) allowed]
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Adaptive cubic regularization (ARC): a practical method

» cubic regularization model at x; [C, Gould & Toint ('11,'17,18)]
T 1 702 1 3
mi(s) = f(xx) + VF(xk) s+ 55 Vi(xk)s + 6Uk||sH2
where o, > 0 is a regularization weight. [Bi ~ Vf?(x) allowed]

» compute si: my(sk) < f(xx) and || Vsmy(sk)|| < 01 ||sk||?
[no global model minimization required, but possible]
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Adaptive cubic regularization (ARC): a practical method

» cubic regularization model at x; [C, Gould & Toint ('11,'17,18)]
T 1 702 1 3
m(s) = f(xk) + VF(xk)' s+ 55 Ve(xk)s + 6Uk||sH2

where o, > 0 is a regularization weight. [Bi ~ Vf?(x) allowed]
> compute sx: mi(sk) < f(xx) and [[Vsmp(si)| < 61 llsell?
[no global model minimization required, but possible]
f(Xk) — f(Xk + Sk)
f(x) = mic(si) + golls®
XK + Sk if pp >n=0.1
Xk otherwise

P> compute measure of progress px =

> set X1 = {

L : o
» update regularization weight o441 = k= 20 when py < n;
!

else 0411 = max{120k, Omin} = Mmax{1ok, Omin}
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Adaptive cubic regularization (ARC): a practical method

ARC has excellent convergence properties: globally, to
second-order critical points and locally, Q-quadratically.

ARC: efficient and scalable subproblem solution techniques.

iteration count — 131 P

fraction of problems for which method within c. of best

6 4 2 0 2 4 3

Local cubic model ‘Average-case’ performance
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Worst-case performance of ARC

If V2f is globally Lipschitz continuous, then ARC requires at most

’Vﬁarc : LH% (f(x0) — fow) - efﬂ function evaluations

to ensure ||Vf(Xk) ” S €. [same as theoretical CR method of Nesterov & Polyak ('06)]
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Worst-case performance of ARC

If V2f is globally Lipschitz continuous, then ARC requires at most
3 3 . .
’V/iarc L2 - (f(x0) — flow) - eiiw function evaluations
to ensure ||Vf(Xk) ” S €. [same as theoretical CR method of Nesterov & Polyak ('06)]

Key ingredients:

» sufficient function decrease: from my(sk) < f(xx), we have

F(xk) — F(xr1) = nlf (i) — mi(se) + % Isell’] > Eoellsel?
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Worst-case performance of ARC

If V2f is globally Lipschitz continuous, then ARC requires at most

’Vﬁarc : LH% (f(x0) — fow) - efﬂ function evaluations

to ensure ||Vf(Xk) ” S €. [same as theoretical CR method of Nesterov & Polyak ('06)]

Key ingredients:
» sufficient function decrease: from my(sk) < f(xx), we have
F) = FOxer) = nlf () — mic(se) + llsll®] = Fowllsell®
» long successful steps: ||sk|| > CHVf(XkH)H%
(and ok > Omin > 0)
= while ||Vf(xk+1)|| > € and k successful,
f(xk) = f(Xks1) > ZominC - e

. c 3
summing up over k successful: f(xp) — fiow > ks%a
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Cubic regularization: worst-case bound is

Sharpness: for any € > 0, to generate |f'(xx)| < €, cubic
regularization/ARC applied to this f takes precisely

3
[e* 5-‘ iterations/evaluations

x10°

2.2224

22222

The objective function
]
5
&
The gradient
The second derivative
The third derivative

ARC's worst-case bound is optimal within a large class of
second-order methods for f with Lipschitz continuous V2f.
[CGT'11, Carmon et al'18]
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Worst-case evaluation complexity of methods: summary

Global rates of convergence from any initial guess

Under sufficient smoothness assumptions on derivatives of f
(Lipschitz continuity), for any (e1,€2) > 0, the algorithms generate
IVF(x)|l < €1 (and Amin(V2F(x()) > —e€2) in at most k™
iterations/evaluations:

1st, 2nd Criticality SD NeWton/TR/LS ARC TR+/ LS+
Vi)l <a |0 | oG | o ( ) 0 ( )
Amin (V2 (x0)) > —2 - O0(e; %) O(e; ) O(e;”)

[TR+:Curtis et al,’17]

[LS+:Royer et al'18]

» O(-) contains f(Xg) — fiow, Lgrad OF LHessian and algorithm

parameters.

» all bounds are sharp, ARC bound is optimal for second-order

methods

[C, Gould & Toint,’10,’11, '17; Carmon et al ('18)]
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Regularization methods with higher derivatives
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Adaptive cubic regularization: ARC (=AR2)

[Griewank ('81, TR); Nesterov & Polyak ('06); Weiser et al ('07); C, Gould & Toint ("11)]

[Dussault ('15); Birgin et al ('17)]
P cubic regularization model at x

mi(s) = F(xc) + VF(xc)ls] + 1V F2(xc)[s]? "‘%UkHSHS

) _ T(xks)
where o, > 0 is a regularization weight. [, ~ vr(x) allowed]

» compute si @ mi(sk) < F(xk), [|[Vsmi(sk)|| < HlekH% and

)\min(VEmk(sk)) > —92 ||Sk H% [no global model minimization required, but possible]
f(Xk) — f(Xk + Sk)
f(Xk) — Tz(Xk, Sk)
Xk + sk if pp>n=0.1
Xk otherwise

> compute px =

P> set xk41 = {

g
> oyl = 7: = 20, when py < n; else

Ok+1 = Max{Y20k, Omin} = Max{1ok, omin}
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Adaptive pth order regularization: ARp

[Birgin et al ("17), C, Gould, Toint('20)]

ARp proceeds similarly to ARC/AR2:
» pth order regularization model at x

+1
aillsll

mi(s) = F(xi) + VF(xi)s] + ... + ;vpf(xk)[s]p+(p+1 .

Tp(xk,s)
where o, > 0 is a regularization weight.

> compute sk : mi(sk) < F(xk), [Vsmi(si)ll < 01llskll5 and
)\min(vgmk(sk)) > —0, ||S;(Hp_1 [0 global model minimization required]
f(Xk) — f(Xk + Sk)
f(Xk) — Tp(Xk, Sk)
Xk + Sk if pp >n=0.1
X otherwise

> compute px =

> set X411 = {

g
> oK1 = Tk _ 20 when py < 7); else

Ok+1 = Max{V20k, Omin} = max{iok, Omin}
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Worst-case complexity of ARp for 1st/2nd-order criticality

[Birgin et al ("17), C, Gould, Toint('20)]
Theorem: Let p > 2, f € CP(R"), bounded below by fiy and with
the pth derivative Lipschitz continuous. Then ARp requires at
most

_ptl _ptl
{’ill - (f(x0) = fiow) - max [el P ey Pl} + 51,4

function and derivatives' evaluations/iterations to ensure
”Vf(Xk)H S €1 and )\m;n(V2f(xk)) Z —€7.

1st, 2nd Criticality p=2 p=3 p=4 ...p
IVFel < | o) [ o@*?) | o(a”) | o(q®7P)
Anin(VF(x) > —&2 | O(°) | O(g?) | O(e;°7) | O V07Y)

All bounds are sharp, and ARp 1st-order bound is optimal for pth order mthds.

[C, Gould & Toint,’20 Carmon et al ('18)]
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Worst-case complexity of ARp for 1st/2nd-order criticality

Sketch of Proof (Theorem):
» Sufficient decrease on successful steps

[Birgin et al ('17), C, Gould, Toint('20)]

) = fxi1) = nlF () = Tplxe 5]
= F0x) — mi(si) + oy llsellP*
> il
> Cmin{egp+1)/p7 6gP'H)/(P—l)} (%)

» Long steps: first-order
IV f(xk + sk)ll 1/p 1/p
> _ >
”SkH =a ( L + 91 + O max - ClEl
and second-order
sl > e (Amn(T2 At s))
kil =52 L+ 02 + omax

where ) < omax = C - L. Summing up (*) over successful
iterations + counting unsuccessful iterations.

> CQE;/(pil)
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ARp for 3rd-order criticality

In the model minimization, require also the 3rd order approximate
condition:

maX
dEMk+1

Vimi(sldl| < llsel” 2,

whenever
M1 ={d|[|d]| =1 and [Vim(s)[d]?] < [[sllP~*} # 0.

Then under same conditions as Theorem, ARp takes at most
_ptl  _pil  _pil
—1 )
[51,2,3 - (f(x0) = fiow) - max [61 P e e " } + 51’24
function and derivatives' evaluations/iterations to ensure
IV (x| < €1, Amin(V2F(xk)) > —€2

and ‘V3f(xk)[d]3‘ < €3, [V2F(x)[d]?] < eo, for all d € M.

e M includes approximate objective's Hessian null space if
subproblem is solved to local € accuracy.
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Regularization methods for high order optimality
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Beyond 3rd order: high(er)-order optimality conditions

[C. Gould, Toint('18, J FoCM)]
Let x, be a local minimizer of f € C(R"). Consider (feasible)
descent arcs x(a) = x. + Y1, &'s; + o(ad) where a > 0. Derive
necessary (and sometimes sufficient) optimality conditions.
[Hancock, Peano example of non-Taylor based arcs along which descent happens!]

For j € {1,...,q}, the inequality

J
1
kf Z Vif(x*)[sfp R sfk] >0
k=1 (l1,...,L)EP(j k)

holds for all (s1,...,s;) such that, for i € {1,...,j — 1},

i

1
Zﬂ Z vﬁf(x*)[sel,...,sa] =0,

k=1 " \(l1,....0)€P(i,k)

where the index sets P(j, k) = {(£1,...,0k) € {1,...,j}* | 2K i = j}.
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Beyond 3rd order: high(er)-order optimality conditions

[C, Gould, Toint('18, J FoCM)]

» Convex constraints (and suitable constraint qualifications) can
be incorporated.

» Usual first, second and third order optimality conditions can
be derived.

» But, starting at fourth-order and beyond, necessary conditions
above involve a mixture of derivatives of different orders and
cannot/should not be separated/disentangled.

: g o 2 2 4
Example: Peano variant: min,c2 f(x) = x5 — k1xjx2 + KoX{,

where k1 and k2 are specified parameters.

Fourth-order condition (k1 large):
ker! [V1F(0)] = R?, ker?[V2£(0)] = e1, ker’ [V3£(0)] = e; U e2.

IVLF(0)[s2]® + 1VEF(0)[s1, 51, 2] + & Vif(0)[si]* > 0

implies the much weaker V4f(x.)[s1]* > 0 on N?_; ker' [V f(x.)].
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Beyond 3rd order: high(er)-order optimality conditions

[C, Gould, Toint('20, arXiv)]
Challenge: find a (necessary) optimality measure for gth order
criticality for f that is sufficiently accurate and useful in ARp ?
For j € {1,...,q}, a jth order criticality measure for f is: for some
5 € (0,1], let

7 j(x) = f(x) — globmin g <5 Ti(x, d).
— a robust notion of criticality.

> qbfcd-(x) is continuous in x and ¢ for all orders q.
> ¢7,(x) = [VF(x)llo
> ¢‘;72(x) = max{0, —Amin(V2£(x))}62.

If x is a local minimizer of f, then for j € {1,...,q},
§
(x
lim %g ) _ 0,
6—0 o

and this limit also implies the involved necessary conditions before.
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ARqgp: a high order regularization and criticality framework

[C, Gould, Toint('20, arXiv)]
> Let g < p. The pth order regularization model at x
p+1

1
ngusm

» compute (sk,0s): me(sk) < F(xx),

my(s) = Tp(xk,s) +

e i(sk) <00l jefl,... q}.

f(Xk) — f(Xk + Sk)
f(Xk) - TP(Xkask)
P> set Xx11 = Xk + Sk and dx 1 = s if px > n =0.1; else

Xk+1 = Xk and 5k+1 = 5k-
B =Tk = h el
Okt1 = 7 = 20y when py < n; else
1
Ok+1 = maX{’YzUM Umin} = max{%akv Umin}

> compute px =
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ARqgp: a high order regularization and criticality framework

[C, Gould, Toint('20, arXiv)]
Theorem: Let p> g > 1, f € CP(R"), bounded below by fi,, and
with derivatives V/f Lipschitz continuous for j € {1,..., p}.
Terminate ARgp when

o%i(x) < €6 forall j€{1,....q}

for some ¢ that is either 1 (g = 1,2) or at least Ce = C(¢;)

i=1,q
[achievable for ARqp]. Until termination, ARqgp requires at most
__ptl
> g=12: ’751,2 - (f(x0) — fiow) - maxe; P + '“51,2-‘
Jj=lq
[same as ARp]
_a(p+1)
> qg> 2 [ch-(f(xo)— low) - maxe; " +/<aq-‘
Jj=lq

function and derivatives' evaluations/iterations.
All bounds are sharp [c, Gould, Toint,'20]
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ARqgp: a high order regularization and criticality framework

[C. Gould, Toint('lCM 2022)]
Sketch of Proof (Theorem): Same ingredients as for ARp
complexity proof:

Sufficient decrease on successful steps

Omin
f(xk) — f(xkr1) > m\lsﬂl””

Long steps: much more challenging when g > 2!
19 \P )/

> — e’
||Sk|| = Cq <L+Jmax> J

for some j € {1,...,q}, where oy < omax = C - L.
Lower bound on si: (1 — 0)e;6} < (L4 omax) Sy 0k ||se]/P~"+

Summing up (*) over successful iterations + counting unsuccessful
iterations.
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Higher order methods

A few remarks...

» ARqgp with weaker optimality condition: qb?tj <e€idk, j=1,q,

p+l
satisfies complexity bound O (maxj_1 13 P—J+1>.

» TRq (Trust-region detecting gth order criticality) satisfies the
6f(£l+1))
J :

weaker complexity bound: (’)(maxj:1 g

» Variants allowing inexact derivatives and evaluations - with

same complexity available [C, Gould, Toint('20,'22); Bellavia et al('20)]

» Convex constraints can be incorporated into ARp and ARqp
without affecting the evaluation complexity.

» Composite case addressed but weaker complexity bound
obtained (same as for TRq). [C, Gould, Toint('20,'22)
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Universal regularization methods
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Universal ARp for first order criticality

Universal ARp (U-ARp) employs regularized local models
Ok
mi(s) = Tp(xk: ) + —~lIsll2,

where r > p > 1, r real, and T,(xk,s) as in ARp.
U-ARp proceeds similarly to ARp:
> compute si: mi(sk) < F(xx), [|Vsmr(si)l| < 0l|sk]|”™*
and Amin(VZmi(sk)) > —0]|sk||" >
_ f(Xk) — f(Xk + Sk)
T (0 — Tolxo )
» update ok
But U-ARp has an additional crucial ingredient: if px > 7 [i.e., k
successful], check whether
UkHSkHrfl > OéHVf(Xk + Sk)H and UkHSkHr72 > —(lAmin(VZf(Xk + Sk))
where a > 0 is a (suff small) user-chosen constant. (*)
U-ARp allows xx+1 = xx + sk (and oy decrease) only when both
pk > n and (*) hold. Else, oy is increased.
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Beyond Lipschitz continuity, towards non-smoothness

f € CPP(R™): f € CP(R") and VPf is Holder continuous on the
path of the iterates (and trial points), namely,

IVPF(y) = VPF(xi)ll < Llly — x|

holds for all y € [xk, xk + sk], kK > 0.
L, >0 and 3, € [0,1] for any p > 1.

» B, = 0: VPf uniformly bounded.

> [p € (0,1): VPf continuous but not differentiable.

» [p =1: VPf Lipschitz continuous (and differentiable a.e.).
» B, > 1: f reduces to polynomials.

— Holder continuity : a bridging case between smooth and
non-smooth prob|ems [Nemirovskii & Yudin ('83), Nesterov ('13), Devolder ('13), Grapiglia &

Nesterov (’16)]
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Worst-case complexity of UARp

Let r > p > 1, r real and p integer.
Let f € CPP(R").
If r>p+ Bp [e.g., r = p+1], then U-ARp requires at most

o Pf‘sp o P+Bp
{m < (f(x0) — fiow) - max !61 PHop=L € PH”_ZI—‘

function /derivative evaluations and iterations to ensure
||Vf(Xk)|| § €1 and Am;n(sz(xk)) 2 —€9.

r>p+pp [e.g., r =p+1]: the bound is 'universal’, adapting to
landscape smoothness without knowing (,/smoothness of f,
independent of r. [C, Gould, Toint (19, 22)]
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Smooth or nonsmooth?

Sharpness example: the ragged landscape of a f € CLA

Ratio of [V f(x) — VF(y)|/|x — y|?
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Methods with occasionally accurate derivatives
with Katya Scheinberg (Cornell University)
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Probabilistic local models and methods

Context/purpose: f still smooth, but derivatives are
inaccurate/impossible/expensive to compute.
» Local models may be “good”/ “sufficiently accurate” only

with certain probability, for example:
— models based on random sampling of function values (within a
ball)

— finite-difference schemes in parallel, with total probability of any
processor failing less than 0.5
» Consider general algorithmic framework, with inaccurate first-
(and second-)derivatives and then particularize to methods.
» Expected number of iterations to generate sufficiently small
true gradients?

Connections to model-based derivative-free optimization (Powell; Conn,
Scheinberg & Vicente'06)
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Probabilistic cubic regularization

Assume that f is accurate/exact.

» Probabilistically accurate local model:
T Tp L 3
my(s) = f(xk) +s' g+ 1is Bksgak”sﬂ

with g ~ Vf(xx) and By ~ V?f(x4) [along the step s],
where &~ holds with a certain probability P € (0, 1]
(conditioned on the past).

— I, occurs : k true iteration; else, k false.
> minsmy(s) [cf. derivative-based ARC];

> adjust ok [cf. derivative-based ARC]
Algorithm : stochastic process and its realizations.
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Probabilistic ARC (P-ARC) - complexity guarantees

Assume that f is accurate/exact. Use the local models
1
mi(s) = f(xk) + 5" g + 15" Bis + 60k||5H3.
Complexity: If Vf and V?f are globally Lipschitz continuous, then

the expected number of iterations that P-ARC takes until
|V£(x¥)|| < e satisfies

NIw

1
IEINe) < ﬁ * Kp—arc * (f(XO) - flow) €

provided the probability of sufficiently accurate models is P > %

This implies limg_ o infy ||V (xk)|| = 0 with probability one.

These bounds match the deterministic complexity bounds of
corresponding methods (in accuracy order).
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Generating probabilistic models

» Stochastic gradient and batch sampling
IV 15, (x*) = V()| < ul| Vs, (<)l

Then model my(s) = f(x¥) + Vs, (x¥) T (x — x¥) is sufficiently
accurate.

> we allow the model to fail with probability less than 0.5,
variable parameters.

If IT(Vsf(x¥)) = V£(x¥), we can show that Vg, f(x*) is

probabilistically sufficiently accurate with prob. P > 0.5 provided
|Sk| is sufficiently large.

— generalization of linesearch stochastic gradient methods.
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Generating probabilistically-accurate models...

Models formed by sampling of function values in a ball B(xk, A)
(model-based dfo) [Conn et al, 2008; Bandeira et al, 2015]
My (p)-fully quadratic model: if the event

W= {IVA(X*)=G¥| < kgA} and [ V*F(X*)=B¥|| < kuli}
holds at least w.p. p (conditioned on the past).

Cubic regularization methods: choose Ay = & /ok. Then my fully
quadratic implies my sufficiently accurate if:

> £, sufficiently small, of order ¢€; or
» adjust & in the algorithm: accept step when [|s¥| > k&,
shrink &, and reject step otherwise.

This framework applies to subsampling gradients and Hessians in
ARC [Kohler & Lucchi ('17), Roosta et al. ('17)]
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Conclusions

Research monograph: [C, Gould, Toint (2022)]
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...much more on inexact methods; subproblem solutions;
special-structure problems; constrained problems....

Coralia Cartis (University of Oxford)



