Evaluation complexity of algorithms for nonconvex optimization

Coralia Cartis (University of Oxford)

Joint with Nick Gould (Rutherford Appleton Laboratory, UK) and Philippe Toint (University of Namur, Belgium)

TraDE-OPT Workshop on Algorithmic and Continuous Optimization, Université Catholique de Louvain, Belgium July 4-8, 2022

Nonconvex optimization

Find (local) solutions of the optimization problem:

 $\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x) \quad \text{where } f \quad \text{is smooth} \\$

with f(x) possibly nonconvex and n possibly large.

Standard methods for nonconvex optimization

 $\underset{x \in \mathbb{R}^{n}}{\text{minimize}} f(x) \text{ where } f \text{ is smooth.}$

• f has gradient vector ∇f (first derivatives) and Hessian matrix $\nabla^2 f$ (second derivatives).

 \longrightarrow local minimizer x_* with $\nabla f(x_*) = 0$ (stationarity) and $\nabla^2 f(x_*) \succ 0$ (local convexity).

Derivative-based methods:

• user-given $x_0 \in \mathbb{R}^n$, generate iterates x_k , $k \ge 0$.

► $f(x_k + s) \approx m_k(s)$ simple model of f at x_k ; m_k linear or quadratic Taylor approximation of f. $s_k \rightarrow \min_s m_k(s)$; $s_k \rightarrow x_{k+1} - x_k$

• terminate within ϵ of optimality (small gradient values).

Choices of models

• linear : $m_k(s) = f(x_k) + \nabla f(x_k)^T s$

 \longrightarrow *s*_k steepest descent direction.

► quadratic : $m_k(s) = f(x_k) + \nabla f(x_k)^T s + \frac{1}{2}s^T \nabla^2 f(x_k)s$ $\longrightarrow s_k$ Newton-like direction.

Must safeguard s_k to ensure method converges globally, from an arbitrary starting point x_0 , to first/second order critical points.

Adaptive 'globalization' strategies:

- Linesearch (Cauchy (1847), Armijo (1966))
- Trust region (Fletcher, Powell (1970s))

Much reliable, efficient software for (large-scale) problems.

Evaluation complexity of optimization algorithms

Relevant analyses of iterative optimization algorithms:

- Global convergence to first/second-order critical points (from any initial guess)
- Local convergence and local rates (sufficiently close initial guess, well-behaved minimizer)

[Newton's method: Q-quadratic; steepest descent: linear]

- Global rates of convergence (from any initial guess)
 Worst-case evaluation complexity of methods
 [well-studied for convex problems, unprecedented for nonconvex until recently]
 - evaluations are often expensive in practice (climate modelling, molecular simulations, etc)
 - black-box/oracle computational model (suitable for the different 'shapes and sizes' of nonlinear problems)

[Nemirovskii & Yudin ('83); Vavasis ('92), Sikorski ('01), Nesterov ('04)]

- Evaluation complexity of standard optimization methods
- The power of regularization methods: optimal evaluation complexity
- Beyond Newton: high-degree tensor methods
- Beyond smoothness: universal methods
- Methods using only occasionally accurate evaluations: contemporary challenges

Global efficiency of standard methods

Steepest descent method (with linesearch or trust-region):

- $f \in C^1(\mathbb{R}^n)$ with Lipschitz continuous gradient.
- ▶ to generate gradient $\|\nabla f(x_k)\| \le \epsilon$, requires at most

[Nesterov ('04); Gratton, Sartenaer & Toint ('08), C., Gould, Toint ('12)]

 $\left[\kappa_{\rm sd} \cdot {\rm Lips}_{g} \cdot (f(x_0) - f_{\rm low}) \cdot \epsilon^{-2}\right]$ function evaluations.

Global efficiency of standard methods

Steepest descent method (with linesearch or trust-region):

- $f \in C^1(\mathbb{R}^n)$ with Lipschitz continuous gradient.
- ▶ to generate gradient $\|\nabla f(x_k)\| \le \epsilon$, requires at most

[Nesterov ('04); Gratton, Sartenaer & Toint ('08), C., Gould, Toint ('12)] $\left[\kappa_{\rm sd} \cdot \operatorname{Lips}_{g} \cdot \left(f(x_{0}) - f_{\rm low}\right) \cdot \epsilon^{-2}\right] \text{ function evaluations.}$

Newton's method :

when globalized with trust-region or linesearch, Newton's method will take at most

evaluations to generate $\|\nabla f(\mathbf{x}_k)\| \leq \epsilon$.

similar worst-case complexity for classical trust-region and linesearch methods, even on smoother objectives.

Worst-case bound is sharp for steepest descent

Steepest descent method :

[C, Gould, Toint ('10, '12)]

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) \text{ with } \alpha_k = \arg \min_{\alpha \ge 0} f(x_k - \alpha g(x_k))$$

▶ takes $\lceil \epsilon^{-2} \rceil$ iterations/evaluations to generate $\|\nabla f(x_k)\| \le \epsilon$

Contour lines of $f(x_1, x_2)$ and path of iterates; ∇f globally Lipschitz continuous

Global efficiency of Newton's method

Newton's method: as slow as steepest descent

[C, Gould, Toint ('10, '15)]

• may require $\left[\epsilon^{-2}\right]$ evaluations/iterations, same as steepest descent method

Globally Lipschitz continuous gradient and Hessian But Regularized Newton (ie, ARC) has better/optimal complexity.

Cubic regularization methods

Improved complexity for cubic regularization

A cubic model: [Griewank ('81, TR), Nesterov & Polyak ('06), Weiser et al ('07)] $\nabla^2 f$ is globally Lipschitz continuous with Lipschitz constant L_H : Taylor, Cauchy-Schwarz and Lipschitz \Longrightarrow

$$f(x_k + s) \leq \underbrace{f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T \nabla^2 f(x_k) s + \frac{1}{6} L_H ||s||_2^3}_{m_k(s)}$$

 \implies reducing m_k from s = 0 decreases f since $m_k(0) = f(x_k)$.

Cubic regularization method:

[Nesterov & Polyak ('06)]

$$x_{k+1} = x_k + s_k$$

• compute $s_k \longrightarrow \min_s m_k(s)$ globally: [possible, even if m_k nonconvex!]

Improved complexity for cubic regularization

A cubic model: [Griewank ('81, TR), Nesterov & Polyak ('06), Weiser et al ('07)] $\nabla^2 f$ is globally Lipschitz continuous with Lipschitz constant L_H : Taylor, Cauchy-Schwarz and Lipschitz \Longrightarrow

$$f(x_k + s) \leq \underbrace{f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T \nabla^2 f(x_k) s + \frac{1}{6} L_H ||s||_2^3}_{m_k(s)}$$

 \implies reducing m_k from s = 0 decreases f since $m_k(0) = f(x_k)$.

Cubic regularization method:

[Nesterov & Polyak ('06)]

$$x_{k+1} = x_k + s_k$$

• compute $s_k \longrightarrow \min_s m_k(s)$ globally: [possible, even if m_k nonconvex!]

Worst-case evaluation complexity: at most $\lceil \kappa_{cr} \cdot \epsilon^{-3/2} \rceil$ function evaluations to ensure $\lVert \nabla f(x_k) \rVert \leq \epsilon$. [Nesterov & Polyak ('06)]

Improved complexity for cubic regularization

A cubic model: [Griewank ('81, TR), Nesterov & Polyak ('06), Weiser et al ('07)] $\nabla^2 f$ is globally Lipschitz continuous with Lipschitz constant L_H : Taylor, Cauchy-Schwarz and Lipschitz \Longrightarrow

$$f(x_k + s) \leq \underbrace{f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T \nabla^2 f(x_k) s + \frac{1}{6} L_H ||s||_2^3}_{m_k(s)}$$

 \implies reducing m_k from s = 0 decreases f since $m_k(0) = f(x_k)$.

Cubic regularization method:

[Nesterov & Polyak ('06)]

$$x_{k+1} = x_k + s_k$$

• compute $s_k \longrightarrow \min_s m_k(s)$ globally: [possible, even if m_k nonconvex!]

Worst-case evaluation complexity: at most $\lceil \kappa_{\rm cr} \cdot \epsilon^{-3/2} \rceil$ function evaluations to ensure $\lVert \nabla f(x_k) \rVert \leq \epsilon$. [Nesterov & Polyak ('06)]

Can we make cubic regularization computationally efficient ?

cubic regularization model at x_k [C, Gould & Toint ('11,'17,'18)]

$$m_k(s) = f(x_k) + \nabla f(x_k)^T s + \frac{1}{2} s^T \nabla f^2(x_k) s + \frac{1}{6} \sigma_k ||s||_2^3$$

where $\sigma_k > 0$ is a regularization weight. $[B_k \approx \nabla f^2(x_k) \text{ allowed}]$

cubic regularization model at x_k [C, Gould & Toint ('11,'17,'18)]

$$m_k(s) = f(x_k) + \nabla f(x_k)^T s + \frac{1}{2} s^T \nabla f^2(x_k) s + \frac{1}{6} \sigma_k ||s||_2^3$$

where $\sigma_k > 0$ is a regularization weight. $[B_k \approx \nabla f^2(x_k) \text{ allowed}]$ • compute s_k : $m_k(s_k) < f(x_k)$ and $\|\nabla_s m_k(s_k)\| \le \theta_1 \|s_k\|^2$ [no global model minimization required, but possible]

cubic regularization model at x_k [C, Gould & Toint ('11,'17,'18)]

$$m_k(s) = f(x_k) + \nabla f(x_k)^T s + \frac{1}{2} s^T \nabla f^2(x_k) s + \frac{1}{6} \sigma_k ||s||_2^3$$

where $\sigma_k > 0$ is a regularization weight. $[B_k \approx \nabla f^2(x_k) \text{ allowed}]$ • compute s_k : $m_k(s_k) < f(x_k)$ and $\|\nabla_s m_k(s_k)\| \le \theta_1 \|s_k\|^2$ [no global model minimization required, but possible]

• compute measure of progress $\rho_k = \frac{f(x_k) - f(x_k + s_k)}{f(x_k) - m_k(s_k) + \frac{1}{6}\sigma_k \|s\|^3}$

$$\blacktriangleright \text{ set } x_{k+1} = \begin{cases} x_k + s_k & \text{ if } \rho_k > \eta = 0.1 \\ x_k & \text{ otherwise} \end{cases}$$

• update regularization weight $\sigma_{k+1} = \frac{\sigma_k}{\gamma_1} = 2\sigma_k$ when $\rho_k < \eta$; else $\sigma_{k+1} = \max\{\gamma_2\sigma_k, \sigma_{\min}\} = \max\{\frac{1}{2}\sigma_k, \sigma_{\min}\}$

ARC has excellent convergence properties: globally, to second-order critical points and locally, Q-quadratically.

ARC: efficient and scalable subproblem solution techniques.

Worst-case performance of ARC

If $\nabla^2 f$ is globally Lipschitz continuous, then ARC requires at most $\left[\kappa_{\rm arc} \cdot L_{\rm H}^{\frac{3}{2}} \cdot (f(x_0) - f_{\rm low}) \cdot \epsilon^{-\frac{3}{2}}\right]$ function evaluations

to ensure $\|
abla f(x_k) \| \leq \epsilon$. [same as theoretical CR method of Nesterov & Polyak ('06)]

Worst-case performance of ARC

If $\nabla^2 f$ is globally Lipschitz continuous, then ARC requires at most $\left[\kappa_{\rm arc} \cdot L_{\rm H}^{\frac{3}{2}} \cdot (f(x_0) - f_{\rm low}) \cdot \epsilon^{-\frac{3}{2}}\right]$ function evaluations

to ensure $\|
abla f(x_k)\| \leq \epsilon$. [same as theoretical CR method of Nesterov & Polyak ('06)]

Key ingredients:

• sufficient function decrease: from $m_k(s_k) < f(x_k)$, we have $f(x_k) - f(x_{k+1}) \ge \eta[f(x_k) - m_k(s_k) + \frac{\sigma_k}{6} \|s_k\|^3] \ge \frac{\eta}{6} \sigma_k \|s_k\|^3$ If $\nabla^2 f$ is globally Lipschitz continuous, then ARC requires at most $\left[\kappa_{\rm arc} \cdot L_{\rm H}^{\frac{3}{2}} \cdot (f(x_0) - f_{\rm low}) \cdot \epsilon^{-\frac{3}{2}}\right]$ function evaluations

to ensure $\|
abla f(x_k)\| \leq \epsilon.$ [same as theoretical CR method of Nesterov & Polyak ('06)]

Key ingredients:

sufficient function decrease: from m_k(s_k) < f(x_k), we have f(x_k) - f(x_{k+1}) ≥ η[f(x_k) - m_k(s_k) + σ_k/6 ||s_k||³] ≥ η/6 σ_k ||s_k||³
long successful steps: ||s_k|| ≥ C ||∇f(x_{k+1})||^{1/2} (and σ_k > σ_{min} > 0)

$$\implies \text{ while } \|\nabla f(x_{k+1})\| \ge \epsilon \text{ and } k \text{ successful,} \\ f(x_k) - f(x_{k+1}) \ge \frac{\eta}{3}\sigma_{\min}C \cdot \epsilon^{\frac{3}{2}}$$

summing up over k successful: $f(x_0) - f_{low} \ge k_{\rm S} \frac{\eta \sigma_{\min} C}{3} \epsilon^{\frac{3}{2}}$

Cubic regularization: worst-case bound is optimal

Sharpness: for any $\epsilon > 0$, to generate $|f'(x_k)| \le \epsilon$, cubic regularization/ARC applied to this f takes precisely

 $\left[\epsilon^{-\frac{3}{2}}\right]$ iterations/evaluations

ARC's worst-case bound is optimal within a large class of second-order methods for f with Lipschitz continuous $\nabla^2 f$.

[[]CGT'11, Carmon et al'18]

Worst-case evaluation complexity of methods: summary

Global rates of convergence from any initial guess

Under sufficient smoothness assumptions on derivatives of f(Lipschitz continuity), for any $(\epsilon_1, \epsilon_2) > 0$, the algorithms generate $\|\nabla f(x_k)\| \le \epsilon_1$ (and $\lambda_{\min}(\nabla^2 f(x_k)) \ge -\epsilon_2$) in at most $k_{\epsilon}^{\text{alg}}$ iterations/evaluations:

1st, 2nd Criticality	SD	Newton/TR/LS	ARC	TR+/LS+
$\ abla f(x_k)\ _2 \leq \epsilon_1$	$\mathcal{O}(\epsilon_1^{-2})$	$\mathcal{O}(\epsilon_1^{-2})$	$\mathcal{O}\left(\epsilon_{1}^{-\frac{3}{2}}\right)$	$\mathcal{O}\left(\epsilon_1^{-\frac{3}{2}}\right)$
$\lambda_{\min}(abla^2 f(x_k)) \geq -\epsilon_2$	_	$\mathcal{O}(\epsilon_2^{-3})$	$\mathcal{O}(\epsilon_2^{-3})$	$\mathcal{O}(\epsilon_2^{-3})$

[TR+:Curtis et al, 17]

[LS+:Royer et al'18]

- ▶ $\mathcal{O}(\cdot)$ contains $f(x_0) f_{\text{low}}$, L_{grad} or L_{Hessian} and algorithm parameters.
- all bounds are sharp, ARC bound is optimal for second-order methods [C, Gould & Toint, '10, '11, '17; Carmon et al ('18)]

Regularization methods with higher derivatives

Adaptive cubic regularization: ARC (=AR2)

[Griewank ('81, TR); Nesterov & Polyak ('06); Weiser et al ('07); C, Gould & Toint ('11)]

[Dussault ('15); Birgin et al ('17)]

cubic regularization model at x_k

 $m_k(s) = \underbrace{f(x_k) + \nabla f(x_k)[s] + \frac{1}{2}\nabla f^2(x_k)[s]^2}_{6} + \frac{1}{6}\sigma_k ||s||_2^3$ $T_2(x_k,s)$ where $\sigma_k > 0$ is a regularization weight. $[B_k \approx \nabla f^2(x_k) \text{ allowed}]$ • compute s_k : $m_k(s_k) < f(x_k)$, $\|\nabla_s m_k(s_k)\| < \theta_1 \|s_k\|_2^2$ and $\lambda_{\min}(\nabla_s^2 m_k(s_k)) \ge -\theta_2 \|s_k\|_2^1$ [no global model minimization required, but possible] • compute $\rho_k = \frac{f(x_k) - f(x_k + s_k)}{f(x_k) - T_0(x_k - s_k)}$ $\blacktriangleright \text{ set } x_{k+1} = \begin{cases} x_k + s_k & \text{ if } \rho_k > \eta = 0.1 \\ x_k & \text{ otherwise} \end{cases}$ • $\sigma_{k+1} = \frac{\sigma_k}{\gamma_k} = 2\sigma_k$ when $\rho_k < \eta$; else $\sigma_{k+1} = \max\{\gamma_2 \sigma_k, \sigma_{\min}\} = \max\{\frac{1}{2}\sigma_k, \sigma_{\min}\}$

Adaptive pth order regularization: ARp

ARp proceeds similarly to ARC/AR2:

$$pth order regularization model at x_k$$

$$m_k(s) = \underbrace{f(x_k) + \nabla f(x_k)[s] + \ldots + \frac{1}{p!} \nabla^p f(x^k)[s]^p}_{T_p(x_k,s)} + \underbrace{\frac{1}{(p+1)!} \sigma_k \|s\|_2^{p+1}}_{T_p(x_k,s)}$$
where $\sigma_k > 0$ is a regularization weight.

$$compute s_k : m_k(s_k) < f(x_k), \|\nabla_s m_k(s_k)\| \le \theta_1 \|s_k\|_2^p \text{ and } \lambda_{\min}(\nabla_s^2 m_k(s_k)) \ge -\theta_2 \|s_k\|^{p-1} \qquad [no global model minimization required]$$

$$compute \rho_k = \frac{f(x_k) - f(x_k + s_k)}{f(x_k) - T_p(x_k, s_k)}$$

$$set x_{k+1} = \begin{cases} x_k + s_k & \text{if } \rho_k > \eta = 0.1 \\ x_k & \text{otherwise} \end{cases}$$

$$\sigma_{k+1} = \frac{\sigma_k}{\gamma_1} = 2\sigma_k \text{ when } \rho_k < \eta; \text{ else } \sigma_{k+1} = \max\{\gamma_2 \sigma_k, \sigma_{\min}\} = \max\{\frac{1}{2}\sigma_k, \sigma_{\min}\}$$

Worst-case complexity of ARp for 1st/2nd-order criticality

[Birgin et al ('17), C, Gould, Toint('20)]

<u>Theorem</u>: Let $p \ge 2$, $f \in C^{p}(\mathbb{R}^{n})$, bounded below by f_{low} and with the *p*th derivative Lipschitz continuous. Then ARp requires at most

$$\left[\kappa_{1,2}\cdot(f(x_0)-f_{\text{low}})\cdot\max\left[\epsilon_1^{-\frac{p+1}{p}},\epsilon_2^{-\frac{p+1}{p-1}}\right]+\kappa_{1,2}\right]$$

function and derivatives' evaluations/iterations to ensure $\|\nabla f(x_k)\| \leq \epsilon_1$ and $\lambda_{\min}(\nabla^2 f(x_k)) \geq -\epsilon_2$.

1st, 2nd Criticality	p=2	p=3	p=4	p
$\ abla f(x_k)\ _2 \leq \epsilon_1$	$\mathcal{O}(\epsilon_1^{-3/2})$	$\mathcal{O}(\epsilon_1^{-4/3})$	$\mathcal{O}\left(\epsilon_1^{-5/4}\right)$	$\mathcal{O}\left(\epsilon_1^{-(p+1)/p} ight)$
$\lambda_{\min}(abla^2 f(x_k)) \geq -\epsilon_2$	$\mathcal{O}(\epsilon_2^{-3})$	$\mathcal{O}(\epsilon_2^{-2})$	$\mathcal{O}(\epsilon_2^{-5/3})$	$\mathcal{O}(\epsilon_2^{-(p+1)/(p-1)})$

All bounds are sharp, and ARp 1st-order bound is optimal for *p*th order mthds.

[C, Gould & Toint,'20 Carmon et al ('18)]

Worst-case complexity of ARp for 1st/2nd-order criticality

Sketch of Proof (Theorem):

[Birgin et al ('17), C, Gould, Toint('20)]

Sufficient decrease on successful steps

$$\begin{split} f(x_k) - f(x_{k+1}) &\geq \eta[f(x_k) - T_p(x_k, s_k)] \\ &= f(x_k) - m_k(s_k) + \frac{\sigma_k}{(p+1)!} \|s_k\|^{p+1} \\ &\geq \frac{\sigma_{\min}}{(p+1)!} \|s_k\|^{p+1} \\ &\geq c\min\{\epsilon_1^{(p+1)/p}, \epsilon_2^{(p+1)/(p-1)}\} \quad (*) \end{split}$$

Long steps: first-order

$$\|s_k\| \ge c_1 \left(\frac{\|\nabla f(x_k + s_k)\|}{L + \theta_1 + \sigma_{\max}}\right)^{1/p} \ge c_1 \epsilon_1^{1/p}$$

and second-order

$$\|s_k\| \ge c_2 \left(\frac{\lambda_{\min}(\nabla^2 f(x_k + s_k))}{L + \theta_2 + \sigma_{\max}}\right)^{1/(p-1)} \ge c_2 \epsilon_2^{1/(p-1)}$$

where $\sigma_k \leq \sigma_{\max} = C \cdot L$. Summing up (*) over successful iterations + counting unsuccessful iterations.

ARp for 3rd-order criticality

In the model minimization, require also the 3rd order approximate condition:

$$\max_{d\in\mathcal{M}_{k+1}}\left|\nabla_s^3 m_k(s_k)[d]^3\right|\leq \|s_k\|^{p-2},$$

whenever

$$\mathcal{M}_{k+1} = \left\{ d \mid \|d\| = 1 \text{ and } |\nabla_s^2 m_k(s_k)[d]^2| \le \|s_k\|^{p-1} \right\}
eq \emptyset.$$

Then under same conditions as Theorem, ARp takes at most

$$\left[\kappa_{1,2,3} \cdot (f(x_0) - f_{low}) \cdot \max\left[\epsilon_1^{-\frac{p+1}{p}}, \epsilon_2^{-\frac{p+1}{p-1}}, \epsilon_3^{-\frac{p+1}{p-2}}\right] + \kappa_{1,2,3}\right]$$

function and derivatives' evaluations/iterations to ensure $\|\nabla f(x_k)\| \leq \epsilon_1, \ \lambda_{\min}(\nabla^2 f(x_k)) \geq -\epsilon_2$ and $\left|\nabla^3 f(x_k)[d]^3\right| \leq \epsilon_3, \ |\nabla^2 f(x_k)[d]^2| \leq \epsilon_2, \text{ for all } d \in \mathcal{M}_k.$

• \mathcal{M}_k includes approximate objective's Hessian null space if subproblem is solved to local ϵ accuracy.

Regularization methods for high order optimality

Beyond 3rd order: high(er)-order optimality conditions

Let x_* be a local minimizer of $f \in C^q(\mathbb{R}^n)$. Consider (feasible) descent arcs $x(\alpha) = x_* + \sum_{i=1}^q \alpha^i s_i + o(\alpha^q)$ where $\alpha > 0$. Derive necessary (and sometimes sufficient) optimality conditions. [Hancock, Peano example of non-Taylor based arcs along which descent happens!] For $j \in \{1, \ldots, q\}$, the inequality

[C, Gould, Toint('18, J FoCM)]

$$\sum_{k=1}^{j} \frac{1}{k!} \left(\sum_{(\ell_1,\ldots,\ell_k) \in \mathcal{P}(j,k)} \nabla_x^k f(x_*)[s_{\ell_1},\ldots,s_{\ell_k}] \right) \geq 0$$

holds for all (s_1,\ldots,s_j) such that, for $i\in\{1,\ldots,j-1\}$,

$$\sum_{k=1}^{i} \frac{1}{k!} \left(\sum_{(\ell_1,\ldots,\ell_k)\in\mathcal{P}(i,k)} \nabla_x^k f(x_*)[s_{\ell_1},\ldots,s_{\ell_k}] \right) = 0,$$

where the index sets $\mathcal{P}(j,k) = \{(\ell_1,\ldots,\ell_k) \in \{1,\ldots,j\}^k \mid \sum_{i=1}^k \ell_i = j\}.$

Beyond 3rd order: high(er)-order optimality conditions

[C, Gould, Toint('18, J FoCM)]

- Convex constraints (and suitable constraint qualifications) can be incorporated.
- Usual first, second and third order optimality conditions can be derived.
- But, starting at fourth-order and beyond, necessary conditions above involve a mixture of derivatives of different orders and cannot/should not be separated/disentangled.

Example: Peano variant: $\min_{x \in \mathbb{R}^2} f(x) = x_2^2 - \kappa_1 x_1^2 x_2 + \kappa_2 x_1^4$, where κ_1 and κ_2 are specified parameters.

Fourth-order condition (κ_1 large):

 $\ker^1[\nabla^1_{\!_X} f(0)] = \Re^2, \ \ker^2[\nabla^2_{\!_X} f(0)] = e_1, \ \ker^3[\nabla^3_{\!_X} f(0)] = e_1 \cup e_2.$

$$\frac{1}{2}\nabla_x^2 f(0)[s_2]^2 + \frac{1}{2}\nabla_x^3 f(0)[s_1, s_1, s_2] + \frac{1}{24}\nabla_x^4 f(0)[s_1]^4 \ge 0$$

implies the much weaker $\nabla^4_x f(x_*)[s_1]^4 \ge 0$ on $\cap_{i=1}^3 \ker^i [\nabla^i_x f(x_*)]$.

Beyond 3rd order: high(er)-order optimality conditions

[C, Gould, Toint('20, arXiv)]

Challenge: find a (necessary) optimality measure for qth order criticality for f that is sufficiently accurate and useful in ARp ? For $j \in \{1, \ldots, q\}$, a *j*th order criticality measure for f is: for some $\delta \in (0, 1]$, let

$$\phi_{f,j}^{\delta}(x) = f(x) - \operatorname{globmin}_{\|d\| \leq \delta} T_j(x,d).$$

 \longrightarrow a robust notion of criticality.

•
$$\phi_{f,j}^{\delta}(x)$$
 is continuous in x and δ for all orders q.
• $\phi_{f,1}^{\delta}(x) = \|\nabla f(x)\|\delta$
• $\phi_{f,2}^{\delta}(x) = \max\{0, -\lambda_{\min}(\nabla^2 f(x))\}\delta^2$.
f x is a local minimizer of f, then for $j \in \{1, \dots, q\}$,

$$\lim_{\delta\to 0}\frac{\phi_{f,j}^{\delta}(x)}{\delta^j}=0,$$

and this limit also implies the involved necessary conditions before.

ARqp: a high order regularization and criticality framework

[C, Gould, Toint('20, arXiv)]

• Let $q \leq p$. The *p*th order regularization model at x_k

$$m_{k}(s) = T_{p}(x_{k}, s) + \frac{1}{(p+1)!} \sigma_{k} ||s||_{2}^{p+1}.$$

compute (s_{k}, δ_{s}) : $m_{k}(s_{k}) < f(x_{k}),$
 $\phi_{m_{k},j}^{\delta_{s}}(s_{k}) \leq \theta \epsilon_{j} \delta_{s}^{j}, \quad j \in \{1, \dots, q\}.$
compute $\rho_{k} = \frac{f(x_{k}) - f(x_{k} + s_{k})}{f(x_{k}) - T_{p}(x_{k}, s_{k})}$
set $x_{k+1} = x_{k} + s_{k}$ and $\delta_{k+1} = \delta_{s}$ if $\rho_{k} > \eta = 0.1$; else $x_{k+1} = x_{k}$ and $\delta_{k+1} = \delta_{k}.$

•
$$\sigma_{k+1} = \frac{\sigma_k}{\gamma_1} = 2\sigma_k$$
 when $\rho_k < \eta$; else
 $\sigma_{k+1} = \max\{\gamma_2 \sigma_k, \sigma_{\min}\} = \max\{\frac{1}{2}\sigma_k, \sigma_{\min}\}\}$

ARqp: a high order regularization and criticality framework

[C, Gould, Toint('20, arXiv)]

<u>Theorem</u>: Let $p \ge q \ge 1$, $f \in C^p(\mathbb{R}^n)$, bounded below by f_{low} and with derivatives $\nabla^j f$ Lipschitz continuous for $j \in \{1, \ldots, p\}$. Terminate ARqp when

$$\phi_{f,j}^{\delta_k}(x_k) \leq \epsilon_j \delta_k^j \quad ext{for all } j \in \{1, \dots, q\}$$

for some δ_k that is either 1 (q = 1, 2) or at least $C\epsilon = C(\epsilon_i)_{i=\overline{1,q}}$ [achievable for ARqp]. Until termination, ARqp requires at most

$$\bullet q = 1,2: \quad \left\lceil \kappa_{1,2} \cdot (f(x_0) - f_{\text{low}}) \cdot \max_{j=\overline{1,q}} \epsilon_j^{-\frac{p+1}{p-j+1}} + \kappa_{1,2} \right\rceil$$
[same as ARp]

function and derivatives' evaluations/iterations.

All bounds are sharp [C, Gould, Toint,'20]

ARqp: a high order regularization and criticality framework

[C, Gould, Toint('ICM 2022)]

Sketch of Proof (Theorem): Same ingredients as for ARp complexity proof:

Sufficient decrease on successful steps

$$f(x_k) - f(x_{k+1}) \ge \frac{\sigma_{\min}}{(p+1)!} \|s_k\|^{p+1}$$

Long steps: much more challenging when q > 2!

$$\|s_k\| \ge c_q \left(\frac{1- heta}{L+\sigma_{\max}}\right)^{1/p} \epsilon_j^{j/p}$$

for some $j \in \{1, \ldots, q\}$, where $\sigma_k \leq \sigma_{\max} = C \cdot L$. Lower bound on s_k : $(1 - \theta)\epsilon_j \delta_k^j \leq (L + \sigma_{\max}) \sum_{l=1}^j \delta_k^l \|s_k\|^{p-l+1}$

Summing up (*) over successful iterations + counting unsuccessful iterations.

Higher order methods

A few remarks...

- ARqp with weaker optimality condition: $\phi_{f,j}^{\delta_k} \leq \epsilon_j \delta_k$, $j = \overline{1, q}$, satisfies complexity bound $\mathcal{O}\left(\max_{j=\overline{1,q}} \epsilon_j^{-\frac{p+1}{p-j+1}}\right)$.
- ► TRq (Trust-region detecting *q*th order criticality) satisfies the weaker complexity bound: *O*(max_{j=1,q} ε_j^{-(q+1)}).
- Variants allowing inexact derivatives and evaluations with same complexity available [C, Gould, Toint('20,'22); Bellavia et al('20)]
- Convex constraints can be incorporated into ARp and ARqp without affecting the evaluation complexity.
- Composite case addressed but weaker complexity bound obtained (same as for TRq). [C, Gould, Toint('20,'22)

Universal regularization methods

Universal ARp for first order criticality

Universal ARp (U-ARp) employs regularized local models

$$m_k(s) = T_p(x_k, s) + \frac{\sigma_k}{r} \|s\|_2^r,$$

where $r > p \ge 1$, r real, and $T_p(x_k, s)$ as in ARp. U-ARp proceeds similarly to ARp:

► compute s_k : $m_k(s_k) < f(x_k)$, $\|\nabla_s m_k(s_k)\| \le \theta \|s_k\|^{r-1}$ and $\lambda_{\min}(\nabla_s^2 m_k(s_k)) \ge -\theta \|s_k\|^{r-2}$

$$\rho_k = \frac{f(x_k) - f(x_k + s_k)}{f(x_k) - T_p(x_k, s_k)}$$

update σ_k

But U-ARp has an additional crucial ingredient: if $\rho_k \ge \eta$ [i.e., k successful], check whether

 $\sigma_k \| s_k \|^{r-1} \ge \alpha \| \nabla f(x_k + s_k) \| \text{ and } \sigma_k \| s_k \|^{r-2} \ge -\alpha \lambda_{\min} (\nabla^2 f(x_k + s_k))$

where $\alpha > 0$ is a (suff small) user-chosen constant. (*) U-ARp allows $x_{k+1} = x_k + s_k$ (and σ_k decrease) only when both $\rho_k \ge \eta$ and (*) hold. Else, σ_k is increased.

Beyond Lipschitz continuity, towards non-smoothness

 $f \in C^{p,\beta_p}(\mathbb{R}^n)$: $f \in C^p(\mathbb{R}^n)$ and $\nabla^p f$ is Hölder continuous on the path of the iterates (and trial points), namely,

$$\|\nabla^{p}f(y)-\nabla^{p}f(x_{k})\|\leq L\|y-x_{k}\|^{\beta_{p}}$$

holds for all $y \in [x_k, x_k + s_k]$, $k \ge 0$. $L_p > 0$ and $\beta_p \in [0, 1]$ for any $p \ge 1$.

• $\beta_p = 0$: $\nabla^p f$ uniformly bounded.

▶ $\beta_p \in (0,1)$: $\nabla^p f$ continuous but not differentiable.

▶ $\beta_p = 1$: $\nabla^p f$ Lipschitz continuous (and differentiable a.e.).

$$\beta_p > 1: f \text{ reduces to polynomials.}$$

Let $r \ge p \ge 1$, r real and p integer. Let $f \in C^{p,\beta_p}(\mathbb{R}^n)$. If $r \ge p + \beta_p$ [e.g., r = p + 1], then U-ARp requires at most

$$\left[\kappa_1 \cdot (f(x_0) - f_{\text{low}}) \cdot \max\left[\epsilon_1^{-\frac{p+\beta_p}{p+\beta_p-1}}, \epsilon_2^{-\frac{p+\beta_p}{p+\beta_p-2}}\right]\right]$$

function/derivative evaluations and iterations to ensure $\|\nabla f(x_k)\| \le \epsilon_1$ and $\lambda_{\min}(\nabla^2 f(x_k)) \ge -\epsilon_2$.

 $r \ge p + \beta_p$ [e.g., r = p + 1]: the bound is 'universal', adapting to landscape smoothness without knowing β_p /smoothness of f, independent of r. [C, Gould, Toint ('19, '22)]

Smooth or nonsmooth?

Sharpness example: the ragged landscape of a $f \in C^{1,eta_1}$

Ratio of $|\nabla f(x) - \nabla f(y)| / |x - y|^{\beta}$

Methods with occasionally accurate derivatives with Katya Scheinberg (Cornell University)

Context/purpose: *f* still smooth, but derivatives are inaccurate/impossible/expensive to compute.

Local models may be "good" / "sufficiently accurate" only with certain probability, for example:

 \longrightarrow models based on random sampling of function values (within a ball)

 \longrightarrow finite-difference schemes in parallel, with total probability of any processor failing less than 0.5

- Consider general algorithmic framework, with inaccurate first-(and second-)derivatives and then particularize to methods.
- Expected number of iterations to generate sufficiently small true gradients?

Connections to model-based derivative-free optimization (Powell; Conn, Scheinberg & Vicente'06)

Assume that f is accurate/exact.

Probabilistically accurate local model:

$$m_k(s) = f(x_k) + s^T \frac{g_k}{g_k} + \frac{1}{2} s^T \frac{B_k}{6} s \frac{1}{6} \sigma_k \|s\|^3$$

with $g_k \approx \nabla f(x_k)$ and $B_k \approx \nabla^2 f(x_k)$ [along the step s_k], where \approx holds with a certain probability $P \in (0, 1]$ (conditioned on the past).

 \longrightarrow I_k occurs : k true iteration; else, k false.

min_sm_k(s) [cf. derivative-based ARC];
 adjust σ_k [cf. derivative-based ARC]

Algorithm : stochastic process and its realizations.

Probabilistic ARC (P-ARC) - complexity guarantees

Assume that f is accurate/exact. Use the local models

$$m_k(s) = f(x_k) + s^T g_k + \frac{1}{2} s^T B_k s + \frac{1}{6} \sigma_k ||s||^3.$$

Complexity: If ∇f and $\nabla^2 f$ are globally Lipschitz continuous, then the expected number of iterations that P-ARC takes until $\|\nabla f(x^k)\| \le \epsilon$ satisfies

$$\operatorname{I\!E}(N_{\epsilon}) \leq \frac{1}{2P-1} \cdot \kappa_{\mathrm{p-arc}} \cdot (f(x_0) - f_{\mathrm{low}}) \cdot \epsilon^{-\frac{3}{2}}$$

provided the probability of sufficiently accurate models is $P > \frac{1}{2}$.

This implies $\lim_{k\to\infty} \inf_k \|\nabla f(x_k)\| = 0$ with probability one.

These bounds match the deterministic complexity bounds of corresponding methods (in accuracy order).

Stochastic gradient and batch sampling

$$\|\nabla f_{\mathcal{S}_k}(x^k) - \nabla f(x^k)\| \le \mu \|\nabla f_{\mathcal{S}_k}(x^k)\|$$

Then model $m_k(s) = f(x^k) + \nabla f_{S_k}(x^k)^T(x - x^k)$ is sufficiently accurate.

we allow the model to fail with probability less than 0.5, variable parameters.

If $\mathbb{E}(\nabla_S f(x^k)) = \nabla f(x^k)$, we can show that $\nabla_{S_k} f(x^k)$ is probabilistically sufficiently accurate with prob. P > 0.5 provided $|S_k|$ is sufficiently large.

 \longrightarrow generalization of linesearch stochastic gradient methods.

Generating probabilistically-accurate models...

Models formed by sampling of function values in a ball $B(x_k, \Delta_k)$ (model-based dfo) [Conn et al, 2008; Bandeira et al, 2015] M_k (p)-fully quadratic model: if the event

 $I_k^q = \{ \|\nabla f(X^k) - G^k\| \le \kappa_g \Delta_k^2 \quad \text{and} \quad \|\nabla^2 f(X^k) - B^k\| \le \kappa_H \Delta_k \}$

holds at least w.p. p (conditioned on the past).

Cubic regularization methods: choose $\Delta_k = \xi_k / \sigma_k$. Then m_k fully quadratic implies m_k sufficiently accurate if:

- ξ_k sufficiently small, of order ϵ ; or
- Adjust ξ_k in the algorithm: accept step when ||s^k|| ≥ κξ_k, shrink ξ_k and reject step otherwise.

This framework applies to subsampling gradients and Hessians in ARC [Kohler & Lucchi ('17), Roosta et al. ('17)]

Conclusions

Research monograph: [C, Gould, Toint (2022)]

...much more on inexact methods; subproblem solutions; special-structure problems; constrained problems....