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First-order methods

● Amenability to parallelization
● Affordable per-iteration computational cost
● Low storage requirements

Applegate, David, et al. Practical Large-Scale 
Linear Programming using Primal-Dual Hybrid 
Gradient. NeurIPS 2021.

Deep Learning uses gradient-based solvers on large scale problems

Very successful on various classification and inference tasks

Solved with highly parallelized first-order methods



Nonconvex factorization formulations

● Basin of attraction
○ Initialization
○ Iterative refinement

● Benign Global Landscape

Require statistical/genericity 
conditions such as Restricted 
isometry property (RIP)

Matrix sensing, matrix completion, phase retrieval, blind deconvolution, …

Chi, Yuejie, Yue M. Lu, and Yuxin Chen. Nonconvex optimization meets low-rank 
matrix factorization: An overview. IEEE Transactions on Signal Processing 67.20 
(2019): 5239-5269.



Semidefinite programming
Semidefinite programming (SDP) is a powerful and expressive convex 
optimization method 

n ⨯ n positive semidefinite variable X≽0 + m linear constraints

Applications: Optimal control, Lyapunov analysis, convex relaxations of 
combinatorial optimization, rank minimization and nuclear norm, ...

Typically solved with expensive interior point methods

First-order solver for nonconvex factorization formulation?

● O((mn + m²)n²) operations per iteration
● O(√n log(ε)) iterations
● O(m² + n²) memory



Introduction

Burer-Monteiro methods factor PSD constraint X = UUT, then perform local 
optimization on resulting non-convex unconstrained problem

Feasible  Optimum = 0  

May get stuck in local optimum (explicit counterexamples where second-order 
critical point ≠ global minimum)

When is non-convexity benign?



Related work

For general SDP feasibility with m linear constraints, with the factorization X = UUT, 
where U is a n ⨯ r matrix. 

Second-order critical point ⇒ Global minimum (non-convexity benign) when:

● r > n  [Burer and Monteiro]
● r = Ω(√m), but with smoothed analysis [Cifuentes and Moitra], generic 

constraints [Bhojanapalli, Boumal, Jain, Netrapalli], or determinant 
regularization [Burer and Monteiro], (necessary because of counterexamples)

Samuel Burer and Renato Monteiro. (2005) Local Minima and Convergence in Low-Rank Semidefinite Programming, Mathematical Programming.
Diego Cifuentes and Ankur Moitra. (2019) Polynomial time guarantees for the Burer-Monteiro method, arXiv:1912.01745.
Srinadh Bhojanapalli, Nicolas Boumal, Prateek Jain, Praneeth Netrapalli (2018) Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form, Conference on Learning Theory.

Can we do better if the SDP has special structure?



Sum of Squares Optimization

Given p(x), can we write it as a sum of squares?

Certifies that p(x) ≥ 0, and can be formulated as SDP

Applications in signal processing, filter design and 
control

Image credit: Tae Roh and Lieven Vandenberghe. (2006) Discrete transforms, semidefinite programming and sum-of-squares representations of nonnegative polynomials. SIAM J. on Optimization.

Focus on univariate trigonometric polynomials in this talk (methods can be 
generalized to multivariate case)



Univariate to trigonometric basis

Linear transformation on coefficients : 
Chebyshev basis
Section 1.5.1 : Dumitrescu, Bogdan. Positive trigonometric 
polynomials and signal processing applications. Vol. 103. 
Berlin: Springer, 2007.



Contributions

Theorem: when r ≥ 2  (vs r = Ω(√m)) first-order methods find 
sum of squares decomposition for univariate polynomials 
(non-convexity benign) 

Find sum of squares decomposition of p(x) by solving

Image credit: Chi Yuejie, Lu Yue, Chen Yuxin. (2019) Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview. IEEE Transactions on Signal Processing.

For any norm on polynomials, if f(u) = 0, sum of squares 
decomposition agrees with p(x).

If we choose right norm, ∇f(u) can be computed in 
O(d log d) time using fast fourier transforms (FFTs)



Sampled basis

Sum of squares using a sampled/interpolation basis studied by [Löfberg and Parrilo] 
and [Cifuentes and Parrilo]

Which inner product <p(x),q(x)> on polynomials to choose? 

Valid inner product: when xk are distinct points, if ||p(x)||2 = 0 then p(x) = 0.

Given p(x), q(x) degree d, choose d+1 points xk

Diego Cifuentes and Pablo Parrilo. (2017) Sampling algebraic varieties for sum of squares programs, SIAM J. Optimization.
Johan Lofberg and Pablo Parrilo. (2004) From coefficients to samples: a new approach to SOS optimization, 43rd IEEE Conference on Decision and Control.

How should we choose xk?



Numerical Implementation

Compute sum of squares decomposition of 
degree 2d trigonometric polynomial

Matrix-vector products in ∇f(U) can be computed by FFT

Image credit: Christos Papadimitriou, Sanjoy Dasgupta, and Umesh Vazirani. (2006) Algorithms

Using basis vectors evaluated at 2d + 1 points 



Results

Sum of squares decomposition for 
random trigonometric polynomial

Convergence rate for LBFGS with 
random initialization:

Running times (stop at 10-7 relative 
error in U):

Use r = 4 with 4 cores.



Comparison with existing algorithms

Sturm sequence: Decide positivity of univariate polynomial of degree d in O(d²)

Interior-point: Univariate Sum-of-Squares program of degree d in O(d⁴) per iteration 
and O(√d log(ε)) iterations.
Infeasibility: Dual certificate.

Burer-Monteiro: O(d log(d)) per iteration for degree d.
Infeasibility: Projection to SOS cone.

Guarantee on number of iterations of Burer-Monteiro for univariate SOS ?



Proof Sketch

Given u such that ∇f(u)(v) = 0 and ∇2f(u)(v,v) ≥ 0 for all v, show that f(u) = 0

We have inner product <p(x),q(x)> on polynomials with associated norm ||.||:

Assume that p(x) is a univariate polynomial and r = 2



Proof Sketch
{ p | ∇fp(u) = 0 }

{ p | ∇2fp(u) ≥ 0 
}

p=u1
2 + u2

2
Geometrically, we want to show that the 
only intersection between set with zero 
gradient and PSD Hessian is when f(u) = 0. 

For fixed u, these sets are convex!

Our proof can be interpreted as finding a certificate of this condition 
for every u and p. 



Proof Sketch

Suppose u1 , u2 coprime (true generically)

Bézout's lemma + gradient condition ⇒ exist v1 , v2  s.t.

Suppose u1 = u2 , choose v1 = v and v2 = -v in Hessian condition so for all v,

However, (gradient condition), so

Interpolate between these two cases with the Positivstellensatz



Numerical Implementation

TrigPolys.jl: a new package for fast manipulation of trigonometric polynomials

evaluate, evaluateT and interpolate uses FFTW.jl, enables fast computation of f(U):

AutoGrad.jl enables automatic computation of ∇f(U)

Pass f(U), ∇f(U) to NLopt.jl to minimize f(U) with first-order optimization algorithms



Conclusion

When does it make sense to solve non-convex formulations of convex problems?

In our setting we can prove non-convexity does not hurt us

Also enables fast implementation in Julia


