Low-Rank Univariate Sum-of-Squares Has No Spurious Local Minima

Presented by Benoît Legat
Based on joint work with Chenyang Yuan and Pablo Parrilo

First-order methods

- Amenability to parallelization
- Affordable per-iteration computational cost
- Low **storage** requirements

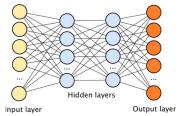
# nodes	PDLP	SCS	Gurobi Barrier	Gurobi Primal Simp.	Gurobi Dual Simp.
10^{4}	7.4 sec.	1.3 sec.	36 sec.	37 sec.	114 sec.
10^{5}	35 sec.	38 sec.	7.8 hr.	9.3 hr.	>24 hr.
10^{6}	11 min.	25 min.	OOM	>24 hr.	-
10^{7}	5.4 hr.	3.8 hr.	-	=	-

Applegate, David, et al. Practical Large-Scale Linear Programming using Primal-Dual Hybrid Gradient. NeurlPS 2021.

Deep Learning uses gradient-based solvers on large scale problems

Very successful on various classification and inference tasks

Solved with highly parallelized first-order methods



Nonconvex factorization formulations

- Basin of attraction
 - Initialization
 - Iterative refinement
- Benign Global Landscape

Require statistical/genericity conditions such as Restricted isometry property (RIP)

Matrix sensing, matrix completion, phase retrieval, blind deconvolution, ...

$$\underset{\boldsymbol{L} \in \mathbb{R}^{n_1 \times r}, \boldsymbol{R} \in \mathbb{R}^{n_2 \times r}}{\text{minimize}} f(\boldsymbol{L}, \boldsymbol{R}) = \frac{1}{4m} \sum_{i=1}^{m} (\langle \boldsymbol{A}_i, \boldsymbol{L} \boldsymbol{R}^\top \rangle - y_i)^2$$

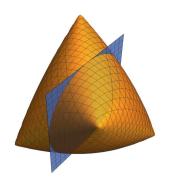
Chi, Yuejie, Yue M. Lu, and Yuxin Chen. **Nonconvex optimization meets low-rank matrix factorization: An overview**. *IEEE Transactions on Signal Processing* 67.20 (2019): 5239-5269.

Semidefinite programming

Semidefinite programming (SDP) is a powerful and expressive convex optimization method

n × n positive semidefinite variable X≥0 + m linear constraints

Applications: Optimal control, Lyapunov analysis, convex relaxations of combinatorial optimization, rank minimization and nuclear norm, ...



Typically solved with expensive interior point methods

- $O((mn + m^2)n^2)$ operations per iteration
- O(√n log(ε)) iterations
- $O(m^2 + n^2)$ memory

First-order solver for nonconvex factorization formulation?

Introduction

Burer-Monteiro methods factor PSD constraint $X = UU^T$, then perform local optimization on resulting non-convex unconstrained problem

May get stuck in local optimum (explicit counterexamples where second-order critical point ≠ global minimum)

When is non-convexity benign?

Related work

For general SDP feasibility with m linear constraints, with the factorization $X = UU^T$, where U is a n × r matrix.

Second-order critical point ⇒ **Global minimum** (non-convexity benign) when:

- r > n [Burer and Monteiro]
- $r = \Omega(\sqrt{m})$, but with smoothed analysis [Cifuentes and Moitra], generic constraints [Bhojanapalli, Boumal, Jain, Netrapalli], or determinant regularization [Burer and Monteiro], (necessary because of counterexamples)

Can we do better if the SDP has special structure?

Sum of Squares Optimization

Given p(x), can we write it as a sum of squares?

$$p(x) = \sum_{i=1}^{r} u_i(x)^2$$

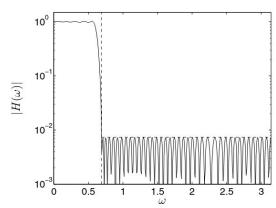
Certifies that $p(x) \ge 0$, and can be formulated as SDP

Focus on univariate trigonometric polynomials in this talk (methods can be generalized to multivariate case)

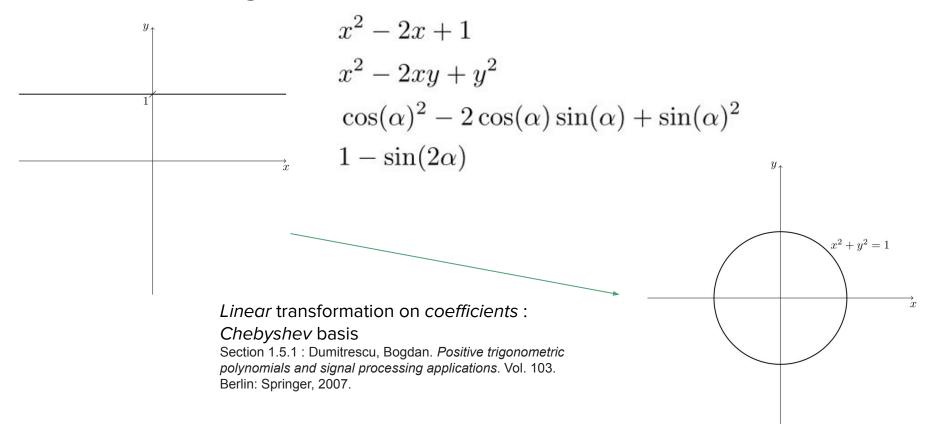
$$p(x) = a_0 + \sum_{k=1}^{d} a_k \cos(kx) + a_{-k} \sin(kx), \quad x \in [0, \pi]$$

Applications in signal processing, filter design and control

$$H(z) = C(zI - A)^{-1}B$$



Univariate to trigonometric basis



Contributions

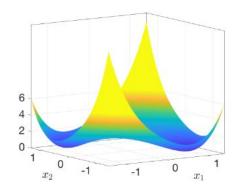
Find sum of squares decomposition of p(x) by solving

$$\min_{u} f(u) = \left\| \sum_{i=1}^{r} u_i(x)^2 - p(x) \right\|$$

For any norm on polynomials, if f(u) = 0, sum of squares decomposition agrees with p(x).

Theorem: when $\mathbf{r} \geq \mathbf{2}$ (vs r = $\Omega(\sqrt{m})$) first-order methods find sum of squares decomposition for univariate polynomials (non-convexity benign)

If we choose right norm, ∇ f(u) can be computed in O(d log d) time using fast fourier transforms (FFTs)



Sampled basis

Which inner product $\langle p(x), q(x) \rangle$ on polynomials to choose?

Given p(x), q(x) degree d, choose d+1 points x_k

$$\langle p(x), q(x) \rangle = \sum_{k=1}^{d+1} p(x_k) q(x_k), \quad ||p(x)||^2 = \sum_{k=1}^{d+1} p(x_k)^2$$

Valid inner product: when x_k are distinct points, if $||p(x)||^2 = 0$ then p(x) = 0.

Sum of squares using a sampled/interpolation basis studied by [Löfberg and Parrilo] and [Cifuentes and Parrilo]

How should we choose x_{ν} ?

Numerical Implementation

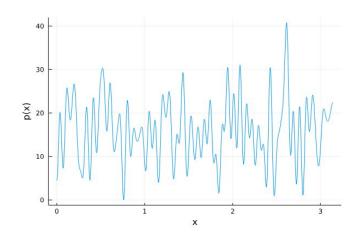
Compute sum of squares decomposition of degree 2d trigonometric polynomial

$$p(x) = a_0 + \sum_{k=1}^{d} a_k \cos(kx) + a_{-k} \sin(kx)$$

Using basis vectors evaluated at 2d + 1 points

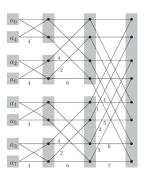
$$\langle p, q \rangle = \sum_{k=1}^{2d+1} p(x_k) q(x_k), \quad x_k = \frac{2k\pi}{2d+1}$$

$$B_k = \begin{bmatrix} 1 & \cos(x_k) & \cdots & \cos(\frac{d}{2}x_k) & \sin(x_k) & \cdots & \sin(\frac{d}{2}x_k) \end{bmatrix}^\top$$



Matrix-vector products in $\nabla f(U)$ can be computed by FFT

$$\nabla f(U) = U^T B \operatorname{diag}(\|U^T B_k\|^2 - p(x_k)) B^T$$

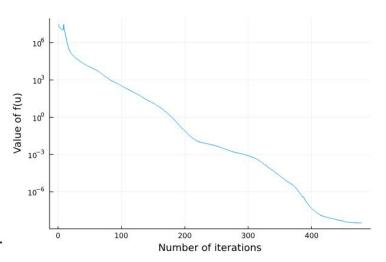


Results

Sum of squares decomposition for random trigonometric polynomial

Convergence rate for LBFGS with random initialization:

Degree	Time in seconds	Iterations
2,000	$2\left(1-2\right)$	340 (306 - 384)
10,000	6(5-6)	530 (497 - 592)
20,000	9(8-10)	632 (587 - 695)
100,000	53 (46 - 59)	1126 (980 - 1248)
200,000	160 (139 - 174)	1375 (1212 - 1532)
1,000,000	1461 (1212 - 1532)	2303 (1934 - 2437)



Running times (stop at 10⁻⁷ relative error in U):

Use r = 4 with 4 cores.

Comparison with existing algorithms

Sturm sequence: Decide positivity of univariate polynomial of degree d in O(d2)

Interior-point: Univariate Sum-of-Squares program of degree d in $O(d^4)$ per iteration and $O(\sqrt{d \log(\epsilon)})$ iterations.

Infeasibility: Dual certificate.

Burer-Monteiro: O(d log(d)) per iteration for degree d.

Infeasibility: Projection to SOS cone.

Guarantee on number of iterations of Burer-Monteiro for univariate SOS?

Proof Sketch

Assume that p(x) is a univariate polynomial and r = 2

$$f(u) = ||u_1(x)|^2 + u_2(x)^2 - p(x)||^2 = ||s(x) - p(x)||^2$$

Given u such that $\nabla f(u)(v) = 0$ and $\nabla^2 f(u)(v,v) \ge 0$ for all v, show that f(u) = 0

We have inner product $\langle p(x), q(x) \rangle$ on polynomials with associated norm ||.||:

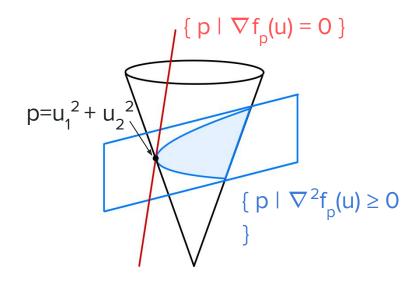
$$\nabla f(u)(v) \sim \left\langle \sum_{j=1}^{r} u_j(x) v_j(x), s(x) - p(x) \right\rangle = 0$$

$$\nabla^2 f(u)(v, v) \sim \left\langle \sum_{j=1}^{r} v_j(x)^2, s(x) - p(x) \right\rangle + 2 \left\| \sum_{j=1}^{r} u_j(x) v_j(x) \right\|^2 \ge 0$$

Proof Sketch

Geometrically, we want to show that the only intersection between set with zero gradient and PSD Hessian is when f(u) = 0.

For fixed u, these sets are convex!



Our proof can be interpreted as finding a certificate of this condition for every u and p.

Proof Sketch

$$\nabla f(u)(v) \sim \langle u_1(x)v_1(x) + u_2(x)v_2(x), s(x) - p(x) \rangle = 0$$

$$\nabla^2 f(u)(v, v) \sim \langle v_1(x)^2 + v_2(x)^2, s(x) - p(x) \rangle + 2 \|u_1(x)v_1(x) + u_2(x)v_2(x)\|^2 \ge 0$$

Suppose u₁, u₂ coprime (true generically)

Bézout's lemma + gradient condition \Rightarrow exist v_1 , v_2 s.t.

$$u_1(x)v_1(x) + u_2(x)v_2(x) = s(x) - p(x) \implies ||s(x) - p(x)||^2 = 0$$

Suppose $u_1 = u_2$, choose $v_1 = v$ and $v_2 = -v$ in Hessian condition so for all v,

$$\langle v(x)^2, s(x) - p(x) \rangle \ge 0 \implies \langle p(x), s(x) - p(x) \rangle \ge 0$$

However,
$$\langle s(x), s(x) - p(x) \rangle = 0$$
 (gradient condition), so $||s(x) - p(x)||^2 = 0$

Interpolate between these two cases with the Positivstellensatz

Numerical Implementation

TrigPolys.jl: a new package for fast manipulation of trigonometric polynomials

```
function Base.:*(p1::TrigPoly, p2::TrigPoly)
   n = p1.n + p2.n
   interpolate(evaluate(pad_to(p1, n)) .* evaluate(pad_to(p2, n)))
end
```

```
p1 = random_trig_poly(10^6)
p2 = random_trig_poly(10^6)
@btime p1 * p2;
```

1.737 s (160 allocations: 778.21 MiB)

evaluate, evaluateT and interpolate uses FFTW.jl, enables fast computation of f(U):

```
f(u) = sum((evaluate(pad_to(u, p.n)).^2 - evaluate(p)).^2)
```

AutoGrad.jl enables automatic computation of $\nabla f(U)$

```
AutoGrad.@primitive evaluate(u::AbstractArray),dy,y evaluateT(dy)
fgrad = AutoGrad.grad(f)
```

Pass f(U), $\nabla f(U)$ to NLopt.jl to minimize f(U) with first-order optimization algorithms

Conclusion

When does it make sense to solve non-convex formulations of convex problems?

In our setting we can prove non-convexity does not hurt us

Also enables fast implementation in Julia

